- 1. (a) Show that there are no proper subfields of \mathbb{Q} .
 - (b) Show that $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field.
- 2. Let X be a vector space over a field K. Let 0 be the zero element of K and **0** the zero-element of X. Using only the definitions of a group, a vector space, and a field, carefully prove each of the following:
 - (a) The identity element e of a group is unique.
 - (b) In any group G, the inverse of $g \in G$ is unique.
 - (c) $0x = \mathbf{0}$ for every $x \in X$;
 - (d) $k\mathbf{0} = \mathbf{0}$ for every $k \in K$;
 - (e) For every $k \in K$ and $x \in X$, if kx = 0, then k = 0 or x = 0.
- 3. Let X denote the vector space of polynomials in $\mathbb{R}[x]$ of degree less than n. Are the vectors $x^3 + 2x + 5$, $3x^2 + 2$, 6x, 6 linearly independent in X? (Assume that $n \ge 4$.)
- 4. The following is called the *Replacement Lemma*: Let X be a vector space over K, and let S be a linearly independent subset of X. Let $x_0 \in \text{span}(S)$ with $x_0 \neq 0$. Prove that there exists $x_1 \in S$ such that the set $S' = (S \setminus \{x_1\}) \cup \{x_0\}$ is a basis for span(S).
 - (a) Prove the Replacement Lemma
 - (b) Suppose that B is a basis for X containing n elements, and let B' be another basis for X. Show that |B'| = n.
- 5. Let Y be a subspace of X, and denote the congruence class mod Y containing $x \in X$ by $\{x\}$. We can make X/Y into a vector space by defining addition and scalar multiplication as follows:

$${x} + {z} = {x + z}, {ax} = a{x}.$$

Show that these operations are well-defined, that is, they do not depend on the choice of congruence class representatives.

- 6. Let X_1 and X_2 be vector spaces over a field K. Show that $\dim(X_1 \oplus X_2) = \dim X_1 + \dim X_2$.
- 7. Let Y be a subspace of a vector space X. Show that $Y \oplus X/Y$ is isomorphic to X.