- 1. Let S be a set of vectors in a finite-dimensional vector space X. Show that S is a basis of X if every vector of X can be written in one and only one way as a linear combination of the vectors in S.
- 2. Let X be a finite-dimensional vector space over K and let $\{x_1, \ldots, x_n\}$ be an ordered basis for X. Let U be a vector space over the same field K but possibly with a different dimension, and let $\{u_1, \ldots, u_n\}$ be an arbitrary set of vectors in U. Show that there is precisely one linear transformation $T: X \to U$ such that $Tx_i = u_i$ for each $i = 1, \ldots, n$.
- 3. Let K be a finite field. The *characteristic* of K, denoted char K, is the smallest positive integer n for which $1 + 1 + \dots + 1 = 0$.

$$n$$
 times

- (a) Prove that the characteristic of K is prime.
- (b) Show that K is a vector space over \mathbb{Z}_p , where $p = \operatorname{char} K$.
- (c) Show that the order |K| of K (the number of elements it contains) is a prime power.
- (d) Show that if K and L are finite fields with $K \subset L$ and $|K| = p^m$ and $|L| = p^n$, then m divides n.
- 4. Let S be a subset of X. Recall that the *annihilator* of S is the set $S^{\perp} = \{\ell \in X' \mid \ell(s) = 0 \text{ for all } s \in S\}.$
 - (a) Show that if S is a subspace of X, then S^{\perp} is a subspace of X'.
 - (b) Let Y be the smallest subspace of X that contains S. Show that $S^{\perp} = Y^{\perp}$.
- 5. Let X be a vector space over a field K.
 - (a) Let v_1, \ldots, v_n be a basis for X. For each *i*, show that there exists a unique linear map $f_i: X \to K$ such that $f_i(v_i) = 1$ and $f_i(v_j) = 0$ for $j \neq i$.
 - (b) Show that f_1, \ldots, f_n is a basis for X' (called the *dual basis* of v_1, \ldots, v_n).
 - (c) Consister the basis $v_1 = (1, -1, 3)$, $v_2 = (0, 1, -1)$, and $v_3 = (0, 3, -2)$ of $X = \mathbb{R}^3$. Find a formula for each element of the dual basis.
 - (d) Express the linear map $f \in X'$, where f(x, y, z) = 2x y + 3z as a linear combination of the dual basis, f_1, f_2, f_3 .
- 6. Let \mathcal{P}_2 be the vector space of all polynomials $p(x) = a_0 + a_1 x + a_2 x^2$ over \mathbb{R} , with degree ≤ 2 . Let ξ_1, ξ_2, ξ_3 be distinct real numbers, and define

$$\ell_j = p(\xi_j) \text{ for } j = 1, 2, 3.$$

- (a) Show that ℓ_1, ℓ_2, ℓ_3 are linearly independent functions on \mathcal{P}_2 .
- (b) Show that ℓ_1, ℓ_2, ℓ_3 is a basis for the dual space \mathcal{P}'_2 .
- (c) Find polynomials $p_1(x), p_2(x), p_3(x)$ in \mathcal{P}_2 of which ℓ_1, ℓ_2, ℓ_3 is the dual basis in \mathcal{P}'_2 .
- 7. Let W be the subspace of \mathbb{R}^4 spanned by (1, 0, -1, 2) and (2, 3, 1, 1). Which linear functions $\ell(x) = c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4$ are in the annihilator of W?