- 1. Let $T: X \to U$ be a linear map. Prove the following:
 - (a) The image of a subspace of X is a subspace of U.
 - (b) The inverse image of a subspace of U is a subspace of X.
- 2. Prove Theorem 3.3 in Lax:
 - (a) The composite of linear mappings is also a linear mapping.
 - (b) Composition is distributive with respect to the addition of linear maps, that is,

$$(R+S) \circ T = R \circ T + S \circ T$$

and

$$S \circ (T+P) = S \circ T + S \circ P,$$

where $R, S: U \to V$ and $P, T: X \to U$.

- 3. Suppose that X, U, and V are vector spaces, and $S: X \to U$ and $T: X \to V$ are linear maps, and T is surjective. Give necessary and sufficient conditions for the existence of a well-defined linear map $R: U \to V$ such that RS = T. Prove all of your claims.
- 4. Let X be a finite-dimensional vector space over K and let $\{x_1, \ldots, x_n\}$ be an ordered basis for X. Let U be a vector space over the same field K but possibly with a different dimension, and let $\{u_1, \ldots, u_n\}$ be an arbitrary set of vectors in U. Show that there is precisely one linear transformation $T: X \to U$ such that $Tx_i = u_i$ for each $i = 1, \ldots, n$.