1. Let $T: X \to U$, with dim X = n and dim U = m. Show that there exist bases B for X and B' for U such that the matrix of T in block form is

$$M = \left(\begin{array}{cc} I_k & 0\\ 0 & 0 \end{array}\right),$$

where I_k is the $k \times k$ identity matrix.

2. Consider the linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ with matrix representation $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & -2 \\ -3 & 0 & 3 \end{pmatrix}$ with respect to the standard basis. What is the matrix representation of T with respect to the

basis
$$\left\{ \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1\\ -1 \end{pmatrix}, \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix} \right\}$$
?

- 3. Let $\mathcal{P}_n = \{p(x) \in \mathbb{R}[x] \mid \deg(p(x)) < n\}.$
 - (a) Show that the map $T: \mathcal{P}_3 \to \mathcal{P}_4$ given by

$$T(p(x)) = 6 \int_1^x p(t) dt$$

is linear. Indicate whether it is 1–1 or onto.

- (b) Let $B_3 = \{1, x, x^2\}$ be a basis for \mathcal{P}_3 and let $B_4 = \{1, x, x^2, x^3\}$ be a basis for \mathcal{P}_4 . Find the matrix representation of T with respect to these bases.
- 4. Let T be a matrix over a field K.
 - (a) Prove that if T has a left inverse, then Tx = u has at most one solution.
 - (b) Prove that if T has a right inverse, then Tx = u has at least one solution.
 - (c) What are the possibilities for the rank of T if it has a left inverse? What if it has a right inverse?
- 5. Let A be an $m \times n$ matrix, and $b \in \mathbb{R}^n$.
 - (a) Prove that Ax = b is solvable if and only if b is in the column space of A.
 - (b) Identify geometrically, as clearly as you can, the subset of 3-dimensional Euclidean space of ℝ³ that corresponds to the column space of the matrix

$$A = \begin{pmatrix} 0 & 2 & -2 \\ 3 & 5 & -2 \\ 4 & 0 & 4 \end{pmatrix} \,.$$

6. Find necessary and sufficient conditions on the entries u_1, u_2, u_3, u_4 under which the following system of linear equations will have at least one solution over $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, and give the number of solutions in case the conditions are met.

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 1 & 0 & 3 \\ 1 & -1 & -1 & 2 \\ 0 & 3 & 2 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix}$$

7. Consider the system of linear equations Tx = u, where

$$T = \begin{pmatrix} 0 & 2 & -2 \\ 3 & 5 & -2 \\ 4 & 0 & 4 \end{pmatrix}, \qquad u = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

- (a) Solve Tx = u over \mathbb{Q} .
- (b) Solve Tx = u over \mathbb{Z}_2 .