- 1. Let S_n denote the set of all permutations of $\{1, \ldots, n\}$.
 - (a) Prove that if $\tau \in S_n$ is a transposition, then $sgn(\tau) = -1$.
 - (b) Let $\pi \in S_n$, and suppose that $\pi = \tau_k \circ \cdots \circ \tau_1 = \sigma_\ell \circ \cdots \circ \sigma_1$, where $\tau_i, \sigma_j \in S_n$ are transpositions. Prove that $k \equiv \ell \mod 2$.
- 2. Let X be an n-dimensional vector space over a field K.
 - (a) Prove that if the characteristic of K is not 2, then every skew-symmetric form is alternating.
 - (b) Give an example of a non-alternating skew-symmetric form.
 - (c) Give an example of a non-zero alternating k-linear form (k < n) such that $f(x_1, \ldots, x_k) = 0$ for some set of linearly independent vectors x_1, \ldots, x_k .
- 3. Let X be a 2-dimensional vector space over \mathbb{C} , and let $f: X \times X \to \mathbb{C}$ be an alternating, bilinear form. If $\{x_1, x_2\}$ is a basis of X, determine a formula for f(u, v) in terms of $f(x_1, x_2)$, and the coefficients used to express u and v with this basis.
- 4. Let X be an n-dimensional vector space over \mathbb{R} , and let f be a non-degenerate symmetric bilinear form, that is, it has the additional property that for all nonzero $x \in X$, there is some $y \in X$ for which $f(x,y) \neq 0$.
 - (a) Show that there exists $x_1 \in X$ with $f(x_1, x_1) \neq 0$.
 - (b) Fix $x_1 \in X$ with $f(x_1, x_1) \neq 0$, and define $T: X \to X'$ by $T: x \mapsto f(x, x_1)$. What is the rank of T?
 - (c) Let $Z = \ker T$. Show that the restriction of f to $Z \times Z$ is again non-degenerate.
 - (d) Prove that X has a basis $\{x_1,\ldots,x_n\}$ such that $f(x_i,x_i)\neq 0$ for all i.
 - (e) Prove or disprove that $f(x_i, x_j) = 0$ whenever $i \neq j$.
- 5. Let X be an n-dimensional vector space over \mathbb{R} , and let f be a non-degenerate symmetric bilinear form.
 - (a) Prove that if f is non-degenerate, the map $F: X \to X'$ given by $F: x \mapsto f(x, -)$ is an isomorphism.
 - (b) Show that, given any basis x_1, \ldots, x_n for X, there exists a basis y_1, \ldots, y_n such that $f(x_i, y_j) = \delta_{ij}$.
 - (c) Conversely, prove that if $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_n\}$ are sets of vectors in X with $f(a_i, b_j) = \delta_{ij}$, then A and B are bases for X.
- 6. Let $A = (c_1, \ldots, c_n)$ be an $n \times n$ matrix (c_i is a column vector), and let B be the matrix obtained from A by adding k times the i^{th} column of A to the j^{th} column of A, for $i \neq q$. Prove that det $A = \det B$.
- 7. Let A be an $n \times n$ matrix and A_{ij} the (i, j)-minor of A, and let C be the $n \times n$ matrix (c_{ij}) , where $c_{ij} = (-1)^{i+j} \det(A_{ij})$ for $1 \le i, j \le n$. Prove that $C^T A = \det(A)I$, where I is the $n \times n$ identity matrix.