- 1. Prove the following properties of the trace function:
 - (a) $\operatorname{tr} AB = \operatorname{tr} BA$ for all $m \times n$ matrices A and $n \times m$ matrices B.
 - (b) tr $AA^T = \sum a_{ij}^2$ for all $n \times n$ matrices A.
- 2. Find the eigenvalues and corresponding eigenvectors for the following matrices over \mathbb{C} .

$$(a) \quad \begin{pmatrix} 2 & 4 \\ 5 & 3 \end{pmatrix} \qquad (b) \quad \begin{pmatrix} 3 & 2 \\ -2 & 3 \end{pmatrix} \qquad (c) \quad \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix} \qquad (d) \quad \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix}$$

- 3. (a) Show that if A and B are similar, then A and B have the same eigenvalues.
 - (b) Is the converse of Part (a) true? Prove or disprove.
- 4. Let A_{ϕ} be the 3 × 3 matrix representing a rotation of \mathbb{R}^3 through an angle ϕ about the *y*-axis.
 - (a) Find the eigenvalues for A_{ϕ} over \mathbb{C} .
 - (b) Determine necessary and sufficient conditions on ϕ in order for A_{ϕ} to have 3 linearly independent eigenvectors in \mathbb{R}^3 . Justify your claim and interpret it geometrically.
- 5. Let A be a 2×2 matrix over \mathbb{R} satisfying $A^T = A$. Prove that A has 2 linearly independent eigenvectors in \mathbb{R}^2 .
- 6. Let A be an $n \times n$ matrix over \mathbb{C} with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. For a vector $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, define the *norm* of z by

$$||z|| = \left(\sum_{i=1}^{n} |z_i|\right)^{1/2}$$

- (a) Prove that if $|\lambda_i| < 1$ for all i, then $||A^N z|| \to 0$ as $N \to \infty$ for all $z \in \mathbb{C}^n$.
- (b) Prove that if $|\lambda_i| > 1$ for all i, then $||A^N z|| \to \infty$ as $N \to \infty$ for all $z \in \mathbb{C}^n$.
- 7. Let A be an $n \times n$ matrix over \mathbb{C} with an eigenvalue λ with index $m \geq 2$. Let v_1 be a corresponding eigenvector, and let v_2 be a generalized eigenvector such that $(A \lambda I)v_2 = v_1$.
 - (a) Prove that for any natural number N,

$$A^N v_2 = \lambda^N v_2 + N \lambda^{N-1} v_1$$

(b) Prove that for any polynomial $q(t) \in \mathbb{C}[t]$,

$$q(A)v_2 = q(\lambda)v_2 + q'(\lambda)v_1,$$

where q'(t) is the derivative of q.

- (c) Conjecture a formula for $q(A)v_m$, where v_1, \ldots, v_m are generalized eigenvectors of A with $(A \lambda I)v_k = v_{k-1}$ (and say $v_0 = 0$, for convenience).
- 8. Let A be an invertible $n \times n$ matrix. Prove that A^{-1} can be written as a polynomial in degree at most n-1. That is, prove that there are scalars a_i such that

$$A^{-1} = a_{n-1}A^{n-1} + a_{n-2}A^{n-2} + \dots + a_1A + a_0I.$$