1. Consider the following matrices:

\[A = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}. \]

(a) Determine the characteristic and minimal polynomials of \(A \), \(B \), and \(C \).

(b) Determine the eigenvectors and generalized eigenvectors of \(A \), \(B \), and \(C \).

2. Consider the following matrices:

\[A = \begin{pmatrix} 2 & -2 & 14 \\ 0 & 3 & -7 \\ 0 & 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -4 & 85 \\ 1 & 4 & -30 \\ 0 & 0 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{pmatrix}. \]

A straightforward calculation shows that the characteristic polynomials are

\[p_A(t) = p_B(t) = p_C(t) = (t - 2)^2(t - 3). \]

(a) Determine the minimal polynomials \(m_A(t) \), \(m_B(t) \), and \(m_C(t) \).

(b) Determine the eigenvectors and generalized eigenvectors of \(A \), \(B \), and \(C \).

(c) Determine which of these matrices are similar.

3. Compute the Jordan canonical form of the following matrices:

\[A = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 2 & 1 & 2 & 1 \\ 0 & 0 & -1 & 0 \\ 4 & 0 & -6 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & -4 \\ 1 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \]

4. Let \(\lambda \) be an eigenvalue of \(A \), and let \(N_i \) be the nullspace of \((A - \lambda I)^i \). Prove that \(A - \lambda I \) extends to a well-defined map \(N_{i+1}/N_i \to N_i/N_{i-1} \), and that this mapping is 1–1.

5. Let \(A \) be a matrix with distinct eigenvalues \(\lambda_1, \ldots, \lambda_k \), and denote the index of \(\lambda_i \) by \(d_i \).

(a) Prove, without using Jordan canonical form, that the minimal polynomial of \(A \) is

\[m_A(t) = \prod_{i=1}^{k} (t - \lambda_i)^{d_i}. \]

(b) Give a simple proof using the Jordan canonical form.

6. Find a list of real matrices, as long as possible, such that

(i) The characteristic polynomial of each matrix is \((x - 1)^5(x + 1) \)

(ii) The minimal polynomial of each matrix is \((x - 1)^2(x + 1) \)

(iii) No two matrices in the list are similar to each other.
7. Let A be an $n \times n$ matrix over \mathbb{C}.
 (a) Prove that if $A^k = A$ for some integer $k > 1$, then A is diagonalizable.
 (b) Prove that if $A^k = 0$, then $A^n = 0$.

8. Let $X \subset \mathbb{R}[x,y]$ be the space of polynomials in x, y of total degree $\leq n$. Show that the map
 \[A : X \longrightarrow X, \quad f \mapsto f + \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \]
 is linear, and find its Jordan canonical form.

9. Let X be an n-dimensional vector space over \mathbb{C}, and let $A, B : X \rightarrow X$ be linear maps.
 (a) Prove that if $AB = BA$, then for any eigenvector v of A with eigenvalue λ, the vector Bv is an eigenvector of A for λ.
 (b) Show that if $\{A_1, A_2, \ldots \mid A_i : X \rightarrow X\}$ is a (possibly infinite) set of pairwise commuting maps, then there is a nonzero $x \in X$ that is an eigenvector of every A_i.
 (c) Suppose that A and B are both diagonalizable. Show that $AB = BA$ if and only if they are simultaneously diagonalizable, i.e., there exists an invertible $n \times n$-matrix P such that both $P^{-1}AP$ and $P^{-1}BP$ are diagonal matrices.

10. Let X be an n-dimensional vector space, and $A : X \rightarrow X$ a linear map with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Let v_1, \ldots, v_n be the corresponding eigenvectors of A, and let ℓ_1, \ldots, ℓ_n be the corresponding eigenvectors of the transpose $A' : X' \rightarrow X'$.
 (a) Prove that $(\ell_i, v_i) \neq 0$ for $i = 1, \ldots, n$.
 (b) Show that if $x = a_1 v_1 + \cdots a_n v_n$, then $a_i = (\ell_i, x)/(\ell_i, v_i)$.
 (c) Is ℓ_1, \ldots, ℓ_n necessarily the dual basis of v_1, \ldots, v_n? Why or why not?