1. Consider the following matrix:

\[M_n = \begin{pmatrix} 0 & -a_0 \\ I_{n-1} & -a_{n-1} \end{pmatrix} \]

where \(a_n = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \).

(a) Show that the characteristic polynomial of \(M_n \) is

\[P_{M_n}(t) = t^n + a_{n-1}t^{n-1} + \cdots + a_1t + a_0. \]

Here, \(I_{n-1} \) denotes the \((n-1) \times (n-1)\) identity matrix.

(b) Is \(P_{M_n}(t) \) also the minimal polynomial? Prove or disprove.

(c) Now, let \(X \) be a 4 dimensional vector space over \(\mathbb{R} \) with basis \(\{ x_1, x_2, x_3, x_4 \} \) and let \(T : X \rightarrow X \) be a linear map such that

\[
T(x_1) = x_2, \quad T(x_2) = x_3, \quad T(x_3) = x_4, \quad T(x_4) = -x_1 - 4x_2 - 6x_3 - 4x_4.
\]

Is \(T \) diagonalizable over \(\mathbb{C} \)?

2. Prove that in a real Euclidean space, \(||x|| = \max\{ (x, y) : ||y|| = 1 \} \).

3. Let \(f \) and \(g \) be continuous functions on the interval \([0, 1]\). Prove the following inequalities.

(a) \(\left(\int_0^1 f(t)g(t) \, dt \right)^2 \leq \int_0^1 f(t)^2 \, dt \int_0^1 g(t)^2 \, dt \)

(b) \(\left(\int_0^1 (f(t) + g(t))^2 \, dt \right)^{1/2} \leq \left(\int_0^1 f(t)^2 \, dt \right)^{1/2} + \left(\int_0^1 g(t)^2 \, dt \right)^{1/2} \).

4. Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \(\mathbb{R}^4 \) spanned by \(y_1 = (1, 2, 1, 1) \), \(y_2 = (1, -1, 0, 2) \) and \(y_3 = (2, 0, 1, 1) \).

5. Let \(X \) be the vector space of all continuous real-valued functions on \([0, 1]\). Define an inner product on \(X \) by

\((f, g) = \int_0^1 f(t)g(t) \, dt \).

Let \(Y \) be the subspace of \(X \) spanned by \(f_0, f_1, f_2, f_3 \), where \(f_k(x) = x^k \). Find an orthonormal basis for \(Y \).

6. Let \(Y \) be a subspace of a Euclidean space \(X \), and \(P_Y : X \rightarrow X \) the orthogonal projection onto \(Y \). Prove that \(P_Y^* = P_Y \).

7. Show that a matrix \(M \) is orthogonal iff its column vectors form an orthonormal set.

8. Let \(X \) be an \(n \)-dimensional real Euclidean space, and \(A : X \rightarrow X \) a linear map. Define the map \(f : X \rightarrow X \) by \(f(x, y) = x^T Ay \). Give (with proof) necessary and sufficient conditions on \(A \) for \(f \) to be an inner product on \(X \).