- 1. Let X be a finite-dimensional real Euclidean space. We say that a sequence $\{A_n\}$ of linear maps converges to a limit A if $\lim_{n\to\infty} ||A_n A|| = 0$.
 - (a) Show that $\{A_n\}$ converges to A if and only if for all $x \in X$, $A_n x$ converges to Ax.
 - (b) Show by example that this fails if the dimension of X is infinite.
- 2. Let X be the space of continuous complex-valued functions on [-1, 1] and define an inner product on X by

$$(f,g) = \int_{-1}^{1} f(s)\bar{g}(s) \, ds$$

Let m(s) be a continuous function of absolute value 1, that is, $|m(s)| = 1, -1 \le s \le 1$. Define M to be multiplication by m:

$$(Mf)(s) = m(s)f(s)$$

Show that M is unitary.

- 3. Let A be a linear map of a finite-dimensional complex Euclidean space X.
 - (a) Show that A is normal if and only if it unitarily similar to a diagonal matrix, that is, $A = U^*DU$ for a diagonal matrix D and unitary matrix U.
 - (b) Prove that if A is normal then it has a square-root, that is, a matrix B such that $A = B^2$. Is B necessarily normal? Unique?
 - (c) Suppose that A is diagonalizable. Prove that A is normal if and only if each eigenvector of A is an eigenvector of A^* .
- 4. Let A be a linear map of a finite-dimensional real Euclidean space X.
 - (a) Show that if $A = P^{-1}DP$ for an orthogonal matrix P, then A is normal (that is, $AA^T = A^T A$).
 - (b) Show by example that not all unitary matrices are orthogonal.
 - (c) Show that not every normal matrix is orthogonally similar to a diagonal matrix.
- 5. Express $q(x_1, x_2, x_3) = 3x_1^2 + 8x_1x_2 7x_1x_3 + 12x_2^2 8x_2x_3 + 6x_3^2$ as $q(x) = x^T A x$, where A is symmetric.
- 6. Let

$$M = \begin{pmatrix} 3 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 3 \end{pmatrix}$$

and let q(x) = (x, Mx). Find an orthogonal matrix P which diagonalizes the quadratic form q.

- 7. (a) Write the equation $5x_1^2 6x_1x_2 + 5x_2^2 = 1$ in the form $x^T A x = 1$.
 - (b) Write $A = P^T D P$, where D is a diagonal matrix and P is orthogonal with determinant 1.
 - (c) Sketch the graph of the equation $x^T D x = 1$ in the $x_1 x_2$ -plane.
 - (d) Use a geometric argument applied to part (c) to sketch the graph of $x^T A x = 1$.
 - (e) Repeat steps (a)–(d) for the equation $2x_1^2 + 6x_1x_2 + 2x_2^2 = 1$.
- 8. Let S be the cyclic shift mapping of \mathbb{C}^n , that is, $C(z_1, \ldots, z_n) = (z_n, z_1, \ldots, z_{n-1})$.
 - (a) Prove that S is an isometry in the Euclidean norm.
 - (b) Determine the eigenvalues and eigenvectors of S.
 - (c) Verify that the eigenvectors are orthogonal.

Hint: There are very short and elegant solutions for all three parts of this problem! You may find Problem 1 on HW 9 useful.