1. **Linear algebra fundamentals.**

A **group** is a set \(G \) and associative binary operation \(\ast \) with
- **closure**: \(a, b \in G \Rightarrow a \ast b \in G \)
- **identity**: \(\exists e \in G \) such that \(a \ast e = e \ast a = a \ \forall a \in G \)
- **inverse**: \(\forall a \in G, \exists b \) such that \(a \ast b = b \ast a = e \).

A group is **abelian** (or **commutative**) if \(a \ast b = b \ast a \ \forall a, b \in G \).

Def: A **field** is a set \(F \) containing \(1 \neq 0 \) with two binary operations, \(+ \) (addition) and \(\ast \) (multiplication) such that
(i) \(F \) is an abelian group under addition
(ii) \(F \setminus \{0\} \) is an abelian group under multiplication
(iii) The distributive law holds: \(a(b + c) = ab + ac \ \forall a, b, c \in F \).

Examples: \(\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p \) (prime \(p \)) are all fields.

\(\mathbb{Z} \) is not a field.

Note: The additive identity is \(0 \), and the inverse of \(a \) is \(-a\).

The multiplicative identity is \(1 \), and the inverse of \(a \) is \(a^{-1} \) or \(\frac{1}{a} \).

Def: A **linear space** (or **vector space**), is a set \(X \) (of vectors) over a field \(F \) (of scalars) such that
(i) \(X \) is an abelian group under addition
(ii) Addition & multiplication are "compatible" in that they have
natural associative & distributive laws relating the two:

- \(a(v+w) = av + aw \quad \forall a \in F, \quad v, w \in X. \)
- \((a+b)v = av + bv \quad \forall a, b \in F, \quad v, w \in X. \)
- \(a(bv) = (ab)v \quad \forall a, b \in F, \quad v \in X. \)
- \(1v = v \quad \forall v \in X. \)

Think of a vector space as a set of vectors that is

(i) closed under addition & inverses
(ii) closed under scalar multiplication
(iii) equipped with the "natural" associative & distributive laws.

Prop: In any vector space \(X \),

(i) The zero vector \(0 \) is unique
(ii) \(0x = 0 \) for all \(x \in X \)
(iii) \(-1x = -x \) for all \(x \in X \).

Pf: Exercise (easy). \(\square \)

Def: A linear map between vector spaces \(X \) and \(Y \) over \(K \) is a function \(\phi: X \to Y \) satisfying

(i) \(\phi(v+w) = \phi(v) + \phi(w) \quad \forall v, w \in X \)
(ii) \(\phi(av) = a \phi(v) \quad \forall a \in F, \quad \forall v \in X. \)

An isomorphism is a linear map that is bijective (1-1 and onto).
Example (of vector spaces):

(i) \(K^n := \{(a_1, \ldots, a_n) : a_i \in K\} \). Addition and multiplication are defined componentwise.

(ii) Set of Functions \(IR \rightarrow IR \) (with \(K = IR \)).

(iii) Set of Functions \(S \rightarrow K \) for an arbitrary set \(S \).

(iv) Set of polynomials of degree \(< n \), coefficients from \(K \).

Exercise: (i) is isomorphic to (iv), and to (iii) if \(|S| = n \).

Def: A subset \(Y \) of a vector space \(X \) is a \textit{subspace} if it too is a vector space.

Example (of subspaces; see previous example)

(i) \(Y = \{(0, a_2, \ldots, a_n, 0) : a_i \in K\} \subseteq K^n \)

(ii) \(Y = \{\text{functions with period } T \mid \pi \} \subseteq \{\text{functions } IR \rightarrow IR\} \)

(iii) \(Y = \{\text{constant functions} , S \rightarrow K\} \subseteq \{\text{functions} , S \rightarrow K\} \).

(iv) \(Y = \{a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n : a_i \in K\} \subseteq \{\text{polynomials of degree } < n\} \).

Def: If \(Y \) and \(Z \) are subsets of a vector space \(X \), then their

\underline{sum} is \(Y + Z = \{y + z \mid y \in Y, z \in Z\} \), and their

\underline{intersection} is \(Y \cap Z = \{x \mid x \in Y \text{ and } x \in Z\} \).

Prop: If \(Y \) and \(Z \) are subspaces of \(X \), then \(Y + Z \) and \(Y \cap Z \) are also subspaces.

Pf: Exercise. \(\square \)
Def: A linear combination of \(j \) vectors \(x_1, \ldots, x_j \) is a vector of the form \(a_1 x_1 + \cdots + a_j x_j \), \(a_i \in \mathbb{K} \).

Prop: The set of all linear combinations of \(x_1, \ldots, x_j \) is a subspace of \(\mathbb{K} \), and it is the smallest subspace of \(\mathbb{K} \) containing \(x_1, \ldots, x_j \).
(This is the subspace spanned by \(x_1, \ldots, x_j \), and denoted \(\langle x_1, \ldots, x_j \rangle \)).

Def: A set of vectors \(x_1, \ldots, x_m \in \mathbb{K} \) span \(\mathbb{K} \) if \(\mathbb{K} = \langle x_1, \ldots, x_j \rangle \).

Def: The vectors \(x_1, \ldots, x_j \) are linearly independent if we can write \(a_1 x_1 + \cdots + a_j x_j = 0 \), where not all \(a_i = 0 \). Otherwise, the vectors are linearly independent.

Lemma 1.1: Suppose that \(x_1, \ldots, x_n \) span \(\mathbb{K} \) and \(y_1, \ldots, y_j \in \mathbb{K} \) are linearly independent. Then \(j \leq n \).

Proof: Write \(y_1 = a_1 x_1 + \cdots + a_n x_n \), assume WLOG that \(a_1 \neq 0 \) (otherwise we may just renumber the \(x_i \)'s). Now, "solve" for \(x_1 \), i.e., write \(x_1 = b_1 y_1 + b_2 x_2 + \cdots + b_n x_n \).

We conclude that \(\langle y_1, x_2, \ldots, x_n \rangle = \mathbb{K} \).

Now, write \(y_2 = b_1 y_1 + b_2 x_2 + \cdots + b_n x_n \), assume WLOG that \(b_2 \neq 0 \).

Solve for \(x_2 \), i.e., write \(x_2 = c_1 y_1 + c_2 y_2 + c_3 x_3 + \cdots + c_n x_n \).

We conclude that \(\langle y_1, y_2, x_3, \ldots, x_n \rangle = \mathbb{K} \).

Continue in this manner. Note that \(j > n \) is impossible because \(y_1, \ldots, y_j \) are linearly independent. More precisely, if \(j > n \), then write \(y_j = a_1 y_1 + \cdots + a_n y_n \) (linear independence). \(\Box \)
Def: A set \(B \) of vectors that span \(X \) and are linearly independent is called a basis for \(X \).

Lemma 2: A vector space \(X \) which is spanned by a finite set of vectors \(x_1, \ldots, x_n \) has a finite basis, contained in this set.

Proof: If \(x_1, \ldots, x_n \) are linearly dependent, there is a nontrivial relation between them, so we can write \(x_n = a_1 x_1 + \ldots + a_{n-1} x_{n-1} \), and thus remove \(x_n \) from the set, i.e., \(x_1, \ldots, x_{n-1} \) spans \(X \). Repeat this process until the remaining set is linearly independent, and then it must be a basis.

Def: A vector space \(X \) is finite dimensional if it has a finite basis.

Examples: In \(\mathbb{R}^3 \), any two vectors that do not lie on the same line are linearly independent. They span a 2-dimensional subspace (a plane). Any three vectors are linearly independent if and only if they do not lie on the same plane.

In \(\mathbb{R}^2 \), if \(v \) and \(w \) are not scalar multiples, then \(\langle v, w \rangle = 1 \mathbb{R}^2 \); i.e., \(v, w \) forms a basis for \(\mathbb{R}^2 \). While there are many bases, we call \(e_1, e_2 \), where \(e_1 = (1,0) \), \(e_2 = (0,1) \) the standard unit basis vectors. These can be easily generalized to \(\mathbb{R}^n \) for any \(n \).
Theorem 1.3: All bases for a finite-dimensional vector space have the same cardinality, which we call the dimension of X, denoted $\dim X$.

Proof: Let x_1, \ldots, x_n and y_1, \ldots, y_m be two bases for X. By Lemma 1.1, $m \leq n$ and $n \leq m \Rightarrow n = m$. \qed

Theorem 1.4: Every linear independent set of vectors y_1, \ldots, y_j in a finite-dimensional vector space X can be extended to a basis of X.

Proof: If $\langle y_1, \ldots, y_j \rangle \neq X$, then $\exists x \in X$ such that $x \notin \langle y_1, \ldots, y_j \rangle$. Add this to the y_i's, and repeat the process. This will terminate in less than $n = \dim X$ steps, because otherwise X would contain more than n linearly independent vectors. \qed

Theorem 1.5: (a) Every subspace Y of a finite-dimensional vector space X is finite-dimensional.
(b) Every subspace Y has a complement in X, that is, another subspace Z (sometimes denoted Y^\perp) such that every vector $x \in X$ can be decomposed uniquely as $x = y + z$, $y \in Y$, $z \in Z$.

Furthermore, $\dim X = \dim Y + \dim Z$.

Proof: Pick $y_1 \in Y$, and extend this to a basis y_1, \ldots, y_j of Y (Theorem 1.4). By Lemma 1.1, $j \leq \dim X < \infty$.

By Theorem 1.4, we can extend this to a basis $y_1, \ldots, y_j, z_1, \ldots, z_n$ of X. Clearly, Y and Z are complements, and $\dim X = n = j + (n-j) = \dim Y + \dim Z$. \qed
Def: X is the direct sum of subspaces Y_1 and Z that are complements of each other. More generally, X is the direct sum of subspaces Y_1, \ldots, Y_m if every $x \in X$ can be expressed uniquely as $x = y_1 + \cdots + y_m$, $y_i \in Y_i$. We denote this as $X = Y_1 \oplus \cdots \oplus Y_m$.

Prop: If $\dim X < \infty$ and $X = Y_1 \oplus \cdots \oplus Y_m$, then $\dim X = \sum_{i=1}^{m} \dim Y_i$.

Proof: Exercise.

Def: An $(n-1)$-dimensional subspace of an n-dimensional space is called a hyperplane.

Example: Let $X = \mathbb{R}^3$, $Y = xy$-plane, $Z = \langle z \rangle$ where $z \notin Y$.

Then $X = Y \oplus Z$, and Y is a hyperplane.

A direct sum is a way to "multiply" two spaces. We can also take a quotient, or "divide" a space by a subspace.

Def: If Y is a subspace of X, then two vectors $x_1, x_2 \in X$ are congruent modulo Y, denoted $x_1 \equiv x_2 \mod Y$, if $x_1 - x_2 \in Y$.

Prop: Congruence mod Y is an equivalence relation, i.e., it is

(i) symmetric: $x_1 \equiv x_2 \Rightarrow x_2 \equiv x_1$.

(ii) reflexive: $x \equiv x$ for all $x \in X$.

(iii) transitive: $x_1 \equiv x_2$ and $x_2 \equiv x_3 \Rightarrow x_1 \equiv x_3$.

Also, if $x_1 \equiv x_2$, then $ax_1 = ax_2$ for all $a \in K$.

Ref: Exercise.
The equivalence classes are called congruence classes mod Y. Denote the congruence class containing x by $\{x\}$. (Also called cosets).

Example: Let $X = \mathbb{R}^3$, and Y be any 1D subspace (line) and Z be any 2D subspace. The congruence classes mod Y are the lines parallel to Y, and the congruence classes mod Z are the planes parallel to Z.

The set of congruence classes can be made into a vector space by defining addition and multiplication by scalars as follows:

$$\{x\} + \{z\} = \{x+z\} \quad \text{and} \quad a\{x\} = \{ax\}.$$

Prop: This addition and multiplication is well-defined, that is, it is independent of the choice of representatives of the congruence classes.

Def: The vector space of congruence classes defined above is called the quotient space of X mod Y, denoted $X \mod Y$, or X/Y.

Example: Take $X = \mathbb{R}^n$ ($n \geq 3$) and $K = \mathbb{R}$, and let $Y = \{(0, 0, a_3, \ldots, a_n) : a_i \in \mathbb{R}\}$. Two vectors are congruent mod Y iff their first 2 components are equal. Each equivalence class can be represented as a pair (a_1, a_2), so X/Y is isomorphic to \mathbb{R}^2.

Think of X/Y as "throwing away" info in the components that pertains to Y.
Theorem 1.6: If \(Y \) is a subspace of a finite-dimensional vector space \(X \), then \(\dim Y + \dim (X/Y) = \dim X \).

\textbf{Pf: } Let \(y_1, \ldots, y_j \) be a basis for \(Y \). By Theorem 4, we can extend this to a basis \(y_1, \ldots, y_j, x_{j+1}, \ldots, x_n \) of \(X \).

\textbf{Claim: } \(\{x_{j+1}\}, \ldots, \{x_n\} \) is a basis of \(X/Y \).

\textbf{Pf: } (They span \(X/Y \)): Pick \(\{x_i\} \in X/Y \), and write
\[
X = \sum_{i=1}^{j} a_i y_i + \sum_{k=j+1}^{n} b_k x_k = \{x_i\} = \{ \Sigma a_i y_i + \Sigma b_k x_k \}
= \Sigma a_i \{y_i\} + \Sigma b_k \{x_k\} = \Sigma b_k \{x_k\}. \quad \checkmark
\]

(They are lin. indep): Suppose \(\sum_{i=j+1}^{n} c_k \{x_k\} = 0. \)

This means \(\Sigma c_k x_k = y_i \), for some \(y_i \in Y \).

Write \(y = \sum_{i=1}^{j} d_i y_i \Rightarrow \Sigma c_k x_k - \Sigma d_i y_i = 0. \)

Since \(y_1, \ldots, x_n \) is a basis of \(X \), all \(c_k, d_i = 0. \quad \checkmark \)

We conclude that \(\dim (X/Y) = \# \) of \(x_k = n - j \) and \(\dim Y + \dim X/Y = j + (n-j) = n = \dim X. \quad \checkmark \)

\textbf{Corollary: } If a subspace \(Y \) of a finite-dimensional vector space \(X \) has \(\dim Y = \dim X \), then \(Y = X. \)

\textbf{Pf: } Exercise.
Theorem 1.7 Let U, V be subspaces of a finite-dimensional vector space X, with $U + V = X$. Then $\dim X = \dim U + \dim V - \dim (U \cap V)$.

Pf: Let $W = U \cap V$. Note that the case when $U \cap V = \{0\}$ is handled by Theorem 1.5.

Define $\overline{U} = U/W$, $\overline{V} = V/W$, and so $\overline{U} \cap \overline{V} = \{0\}$ and $\overline{X} = X/W$ satisfy $\overline{X} = \overline{U} + \overline{V}$.

By Theorem 5, $\dim \overline{X} = \dim \overline{U} + \dim \overline{V}$.

By Theorem 6, $\dim \overline{X} = \dim X - \dim W$
\[\dim \overline{U} = \dim U - \dim W \]
\[\dim \overline{V} = \dim V - \dim W. \]

Together, these imply:
\[\dim \overline{X} = \dim \overline{U} + \dim \overline{V} \]
\[(\dim X - \dim W) = (\dim U - \dim W) + (\dim V - \dim W) \]
\[\Rightarrow \dim X = \dim U + \dim V - \dim W. \quad \square \]

Def: If X_1, X_2 are vector spaces over K, then their Cartesian sum is the set $\{(x_1, x_2) : x_1 \in X_1, x_2 \in X_2\}$, with addition and multiplication defined component-wise, denoted $X_1 \oplus X_2$.

Prop: $X_1 \oplus X_2$ is a linear space, and $\dim (X_1 \oplus X_2) = \dim X_1 + \dim X_2$.

Pf: Exercise.
An interesting example: let \(X \) be the set of all functions \(x(t) \) that satisfy \(\frac{d^2}{dt^2} x + x = 0 \).

If \(x_1(t), x_2(t) \) are solutions, then so are \(x_1(t) + x_2(t) \), and \(c x_1(t) \).

Thus \(X \) is a vector space.

Solutions describe the motion of a mass-spring system (simple harmonic motion). A particular solution is determined completely by specifying the initial position \(x(0) = p \), and initial velocity, \(x'(0) = v \).

Thus, we can describe an element \(x(t) \in X \) by a pair \((p, v)\), \(p, v \in \mathbb{R} \).

We can check that this defines an isomorphism

\[
X \rightarrow \mathbb{R}^2, \quad x(t) \mapsto (x(0), x'(0)).
\]

Note that \(\cos x \) and \(\sin x \) are two linearly independent solutions (not scalar multiples of each other). Thus, the general solution to this differential equation is

\[
C_1 \cos x + C_2 \sin x, \quad C_1, C_2 \in \mathbb{R}.
\]

Said differently, \(\{\cos x, \sin x\} \) is a basis for the solution space of \(x'' + x = 0 \).