- 1. For each of the following sets, determine if it is a *vector space* over \mathbb{R} . If it is, give an explicit *basis* and compute its *dimension*. If it isn't, explain why not by giving an example of how one of the vector space axioms fails.
 - (a) The set of points in \mathbb{R}^3 with x = 0.
 - (b) The set of points in \mathbb{R}^2 with x = y.
 - (c) The set of points in \mathbb{R}^3 with x = y.
 - (d) The set of points in \mathbb{R}^3 with $z \ge 0$.
 - (e) The plane in \mathbb{R}^3 defined by the equation z = 2x 3y.
 - (f) The set of unit vectors in \mathbb{R}^2 .
 - (g) The set of polynomials of degree n.
 - (h) The set $Poly_n$ of polynomials of degree at most n.
 - (i) The set of polynomials of degree at most n, with only even-powers of x.
 - (j) The set $\operatorname{Per}_{2\pi}$ of piecewise continuous functions f(x) such that $f(x) = f(x+2\pi)$ for all $x \in \mathbb{R}$.
 - (k) $\mathbb{C} := \{a + bi \mid a, b \in \mathbb{R}\}.$
- 2. Let v_1, v_2, w be three *linearly independent* vectors in \mathbb{R}^3 . That is, they do not all lie on the same plane. For each of the following (infinite) set of vectors, carefully sketch it in \mathbb{R}^3 , and determine whether or not it is a vector space (i.e., a *subspace* of \mathbb{R}^3). Explain your reasoning.
 - (a) $\{Cv_1 \mid C \in \mathbb{R}\}$
 - (b) $\{Cv_1 + w \mid C \in \mathbb{R}\}$
 - (c) $\{C_1v_1 + C_2v_2 \mid C_1, C_2 \in \mathbb{R}\}$
 - (d) $\{C_1v_1 + C_2v_2 + w \mid C_1, C_2 \in \mathbb{R}\}$
- 3. Find the general solution to each of the following ODEs. Then, decide whether or not the set of solutions form a vector space. Explain your reasoning. Compare your answers to the previous problem.
 - (a) y' 2y = 0
 - (b) y' 2y = 1
 - (c) y'' + 4y = 0
 - (d) $y'' + 4y = e^{3t}$
- 4. Complete the following sentences as concisely as possible:
 - (a) Two non-zero vectors $v_1, v_2 \in \mathbb{R}^2$ are a basis for \mathbb{R}^2 if and only if...
 - (b) Three non-zero vectors $v_1, v_2, v_3 \in \mathbb{R}^3$ are a basis for \mathbb{R}^3 if and only if...

- 5. For each of the following pairs of vectors $v_1 = (x_1, y_1)$ and $v_2 = (x_2, y_2)$, carry out the following steps:
 - i. Sketch v_1 and v_2 in the *xy*-plane.
 - ii. The lines through v_1 and v_2 generate a grid (of parallelograms) on the *xy*-plane. Sketch this "grid," and compute the area of one of the parallelgrams.
 - iii. Calculate the determinant of the matrix $\begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix}$. Is this matrix invertible?
 - iv. Determine whether $\{v_1, v_2\}$ is a basis of \mathbb{R}^2 .
 - (a) $v_1 = (1, 0), v_2 = (0, 1)$
 - (b) $v_1 = (2, 0), v_2 = (0, 2)$
 - (c) $v_1 = (\frac{1}{2}, \frac{1}{2}), v_2 = (\frac{1}{2}, -\frac{1}{2})$
 - (d) $v_1 = (1, 1), v_2 = (1, 2)$
 - (e) $v_1 = (1, 1), v_2 = (-1, 3)$
 - (f) $v_1 = (2, 1), v_2 = (-4, 2)$

Summarize your conclusions in a sentence or two.

- 6. Let v_1 and v_2 be two linearly independent vectors in \mathbb{R}^3 , i.e., they determine a plane P.
 - (a) Sketch the plane $P = \{C_1v_1 + C_2v_2 \mid C_1, C_2 \in \mathbb{R}\}$ in \mathbb{R}^3 .
 - (b) Sketch the vectors $w_1 := \frac{1}{2}v_1 + \frac{1}{2}v_2$ and $w_2 := \frac{1}{2}v_1 \frac{1}{2}v_2$. Do these "determine" the same plane? In other words, is the following (infinite) set of vectors

$$\left\{C_1\left(\frac{1}{2}v_1 + \frac{1}{2}v_2\right) + C_2\left(\frac{1}{2}v_1 - \frac{1}{2}v_2\right) \mid C_1, C_2 \in \mathbb{R}\right\}$$

the same as $\{C_1v_1 + C_2v_2 \mid C_1, C_2 \in \mathbb{R}\}$?

- (c) Is $\{v_1, v_2\}$ a basis for P? Is $\{w_1, w_2\}$ a basis for P? Why or why not?
- (d) Calculate the determinant of the matrix $\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$. Is this matrix invertible? How does this relate to the previous problem?
- 7. (a) Consider the ODE $y'' \omega^2 y = 0$. If we assume that $y(t) = e^{rt}$ and plug this back in and solve for r, we get that $r = \pm \omega$. Therefore, the general solution is $y(t) = C_1 e^{\omega t} + C_2 e^{-\omega t}$, i.e., $\{e^{\omega t}, e^{-\omega t}\}$ is a *basis* for the solution space. Using the fact that $e^{\omega t} = \cosh \omega t + \sinh \omega t$, find a basis for the solution space involving hyperbolic trig functions, and write the general solution using these functions. *Hint*: Look at the previous problem!
 - (b) Repeat the above exercise for the ODE $y'' + \omega^2 y = 0$. Specifically, if we assume that $y(t) = e^{rt}$, then we get that $r = \pm i\omega$. Therefore, the general solution is $y(t) = C_1 e^{i\omega t} + C_2 e^{-i\omega t}$, i.e., $\{e^{i\omega t}, e^{-i\omega t}\}$ is a basis for the solution space. Using Euler's formula: $e^{i\omega t} = \cos \omega t + i \sin \omega t$, find a basis for the solution space involving sine and cosines, and write the general solution using these functions.

- 8. For each of the following, a vector space V is given, along with a finite set $S \subset V$. Denote the subspace of V spanned by S as Span(S). Find an explicit basis for Span(S) and compute its dimension.
 - (a) $V = \mathbb{R}^3$, $S = \{(1, 0, 0), (0, 1, 1), (1, 1, 1), (3, 1, 1)\}.$
 - (b) $V = \mathbb{R}^2$, $S = \{(1,0), (0,1), (\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, -\frac{1}{2})\}.$
 - (c) $V = \{ \text{continuous functions } f \colon \mathbb{R} \to \mathbb{R} \}, S = \{ e^{3x}, e^{-3x}, \cosh 3x, \sinh 3x \}.$
- 9. For each of the following triples of vectors $v_1 = (x_1, y_1, z_1)$, $v_2 = (x_2, y_2, z_2)$, and $v_3 = (x_3, y_3, z_3)$, carry out the following steps:
 - i. Sketch v_1 , v_2 , and v_3 in \mathbb{R}^3 .
 - ii. Calculate the determinant of the matrix $\begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{bmatrix}$. Is this matrix invertible?
 - iii. The lines through v_1 , v_2 , and v_3 generate a tessellation (of parallelepipeds) in \mathbb{R}^3 . What do you think the volume of each parallelepiped is?
 - iv. Describe in words (e.g., line, plane, all of \mathbb{R}^3) the subspace $\text{Span}\{v_1, v_2, v_3\}$. Is $\{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 ?
 - (a) $v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (0, 0, 1)$
 - (b) $v_1 = (2, 0, 0), v_2 = (0, 2, 0), v_3 = (0, 0, 2)$
 - (c) $v_1 = (1, 0, 0), v_2 = (0, 1, 1), v_3 = (3, 1, 1)$
 - (d) $v_1 = (1, 0, 0), v_2 = (0, 2, -1), v_3 = (1, 1, 1)$

Summarize your conclusions in a sentence or two.