- 1. Let $T: V \to W$ be a linear map between vector spaces. Prove that $\ker(T) := \{v \in V \mid T(v) = 0\}$ is a subspace of V.
- 2. Let $V = C^1$, the vector space of differentiable real-valued functions. Consider the linear operator $T = \frac{d}{dt} + 3$.
 - (a) The kernel of T can be characterized precisely by the set of all functions that solve a particular differential equation. Write down this equation.
 - (b) Find the general solution for the differential equation you found in Part (a), and hence an explicit formula for ker(T).
 - (c) Write down an explicit basis for the solution space, ker(T). What is the dimension of this vector space?
- 3. Consider the line $x_2 + 3x_1 = 6$ in \mathbb{R}^2 . In this problem, we will *parametrize* this line, by writing it as $\ell(t) = t\mathbf{v} + \mathbf{w}$, where $t \in (-\infty, \infty)$ and $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$ are fixed.
 - (a) Find a vector $\mathbf{w} = (w_1, w_2) \in \mathbb{R}^2$ that lies on ℓ (Any particular vector will do!)
 - (b) Set $(y_1, y_2) = (x_1 w_1, x_2 w_2)$, where (w_1, w_2) is the vector you found in Part (a). Solve for x_1 and x_2 in terms of y_1 and y_2 , and plug them back into the original equation to get another equation for a line. This is called a *change of coordinates*, or *change* of variables. Note that this line goes through the origin in the (y_1, y_2) -coordinate system, i.e., it contains the vector $\mathbf{0} = (0, 0)$.
 - (c) Write down a parameterization for the line in the (y_1, y_2) -coordinate system. Your answer will be of the form $m(t) = t\mathbf{v}$, where \mathbf{v} is any non-zero vector on the line.
 - (d) Write down a parameterization for the line in the (x_1, x_2) -coordinate system.
 - (e) Sketch both lines, $\ell(t) = t\mathbf{v} + \mathbf{w}$ and $m(t) = t\mathbf{v}$, on the same set of axes.
- 4. Consider the differential equation y' + 3y = 6.
 - (a) Find a particular solution $y_p(t)$ to this equation by inspection. *Hint:* Try $y_p(t) = c$, where c is a constant.
 - (b) Set $y_h(t) = y(t) y_p(t)$, where $y_p(t)$ is the function you found in Part (a). Plug this back into the original equation to get an ODE for $y_h(t)$. This is called a *homogeneous* ODE because $y_h(t) = 0$ is a solution.
 - (c) Solve for $y_h(t)$. Compare your answer to Part (c) of the previous problem.
 - (d) Solve for y(t). Compare your answer to Part (d) of the previous problem.
- 5. Consider the plane P in \mathbb{R}^3 given by the equation $x_3 4x_1 = 5$. In this problem, we will parametrize P by writing it as $P(s,t) = s\mathbf{v}_1 + t\mathbf{v}_2 + \mathbf{w}$, where $s,t \in (-\infty,\infty)$ and $\mathbf{v}_1, \mathbf{v}_2, \mathbf{w} \in \mathbb{R}^3$ are fixed.
 - (a) Find a vector $\mathbf{w} = (w_1, w_2, w_3)$ on P. (Any particular vector will do.)
 - (b) Set $(y_1, y_2, y_3) = (x_1 w_1, x_2 w_2, x_3 w_3)$. Change coordinates by plugging these values back into the equation for P.

- (c) Parametrize the plane in this new coordinate system by writing $Q(s,t) = s\mathbf{v}_1 + t\mathbf{v}_2$, where \mathbf{v}_1 and \mathbf{v}_2 are any two vectors on the plane that are not co-linear. Note that this plane goes through the origin in the (y_1, y_2, y_3) -coordinate system.
- (d) Write down a parameterization for the plane in the (x_1, x_2, x_3) -coordinate system.
- (e) Sketch both planes, $P(s,t) = s\mathbf{v}_1 + t\mathbf{v}_2 + \mathbf{w}$ and $Q(s,t) = s\mathbf{v}_1 + t\mathbf{v}_2$, on the same set of axes.
- 6. Let $\mathbf{v} = (3, 4) \in \mathbb{R}^2$.
 - (a) Compute $||\mathbf{v}|| := \sqrt{\mathbf{v} \cdot \mathbf{v}}$.
 - (b) Recall that $\{\mathbf{e}_1 = (1,0), \mathbf{e}_2 = (0,1)\}$ is an *orthonormal basis* for \mathbb{R}^2 . Decompose \mathbf{v} into this basis, i.e., write $\mathbf{v} = a_1\mathbf{e}_1 + a_2\mathbf{e}_2$ for some $a_1, a_2 \in \mathbb{R}$.
 - (c) Sketch \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{v} in \mathbb{R}^2 . Graphically show what a_1 and a_2 represent in terms of the projection of \mathbf{v} onto the unit vectors \mathbf{e}_1 and \mathbf{e}_2 .
 - (d) The set $\{\mathbf{v}_1 = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}), \mathbf{v}_2 = (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})\}$ is also an orthonormal basis. Decompose \mathbf{v} into this basis, i.e., write $\mathbf{v} = b_1\mathbf{v}_1 + b_2\mathbf{v}_2$ for some $b_1, b_2 \in \mathbb{R}$.
 - (e) On a new set of axes, sketch \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v} in \mathbb{R}^2 . Graphically show what b_1 and b_2 represent in terms of the projection of \mathbf{v} onto the unit vectors \mathbf{v}_1 and \mathbf{v}_2 .
- 7. The following differential equations are linear but inhomogeneous. Carry out the following steps for each.
 - i. Find a particular solution, $y_p(t)$.
 - ii. Make a change of variables $y_h(t) = y(t) y_p(t)$, and plug this back in to get a linear, homogeneous ODE in terms of y_h .
 - iii. The general solution is now $\ker(T)$, for some linear operation T. Find T.
 - iv. Solve for $y_h(t)$, and use this to find y(t).
 - (a) y' + 3y = 6
 - (b) y' + 3y = 2t + 4
 - (c) $y' + 3y = 2e^{4t}$
 - (d) $y' + 3y = \cos 2t$
 - (e) $y'' + 4y = e^t$