- 1. For each of the Cauchy-Euler equations, look for a solution of the form $y(t) = t^r$, and plug this back in to determine r. Find a basis of the solution space consisting of two real-valued functions, and use this to write the general solution.
 - (a) $t^2y'' ty' 3y = 0$
 - (b) $t^2y'' ty' + 5y = 0$
 - (c) $t^2y'' 3ty' + 4y = 0$
- 2. Solve the following differential equations. You may freely use your answers to the previous problem without having to re-derive them.
 - (a) $t^2y'' ty' 3y = 6$ (b) $(t+2)^2y'' - (t+2)y' - 3y = 0$ (c) $(t+2)^2y'' - (t+2)y' - 3y = 6$.
- 3. For each of the Cauchy-Euler equations, make the substitution $x = \ln t$ and write the resulting differential equation in y(x) instead of y(t). [No need to solve them.]
 - (a) $t^2y'' ty' 3y = 0$
 - (b) $t^2y'' ty' + 5y = 0$
 - (c) $t^2y'' 3ty' + 4y = 0$
- 4. Write each of the following as a single series of the form $\sum f(n)t^n$. That is, f(n) is the coefficient of t^n . You may need to additionally "pull out" the first term(s) from one of the sums.

(a)
$$\sum_{n=0}^{5} t^{n-1}$$

(b) $\sum_{n=0}^{5} t^{n+1}$
(c) $\sum_{n=0}^{\infty} na_n t^{n-1} + \sum_{n=0}^{\infty} a_n t^n$
(d) $\sum_{n=0}^{\infty} a_n t^n + \sum_{n=0}^{\infty} b_n t^{n-1} + \sum_{n=0}^{\infty} c_n t^{n+1}$
(e) $5 \sum_{n=0}^{\infty} n(n-1)t^{n-2} + 3 \sum_{n=0}^{\infty} nt^{n-1} - 2 \sum_{n=0}^{\infty} t^n$

5. Consider the ODE y'' - 2ty' + 10y = 0. Note that unlike the equation in the first problem, there will not longer be a simple solution of the form t^r . However, we know that the solution space is 2-dimensional, and most "nice" functions can be written as a power series. Therefore, we'll look for a solution of the form $y(t) = \sum_{n=0}^{\infty} a_n t^n$.

- (a) Plug y(t) back into the ODE and find a recurrence relation for a_{n+2} in terms of a_n and a_{n+1} .
- (b) Explicitly write out the coefficients a_n for $n \leq 9$, in terms of a_0 and a_1 . Write down formulas for a_{2n} and a_{2n+1} in terms of a_0 and a_1 .
- (c) Since the solution space to this ODE is 2-dimensional, the general solution you found in Part (a) can be written as $y(t) = C_0 y_0(t) + C_1 y_1(t)$. Find such a basis, $\{y_0(t), y_1(t)\}$.
- (d) Find a non-zero *polynomial* solution for this ODE. [*Hint*: Make a good choice for a_0 and a_1 .]
- (e) Are there any other polynomial solutions, excluding scalar multiples of the one you found in (d)? Why or why not?
- (f) Consider the initial value problem

$$y'' - 2ty' + 10y = 0$$
, $y(0) = x_0$, $y'(0) = v_0$.

What are x_0 and v_0 in terms of the coefficients a_n ?

- 6. The differential equation $(1 t^2)y'' 2ty' + \lambda(\lambda + 1)y = 0$, where λ is a constant, is known as *Legendre's equation*. It is used for modeling specially symmetric potentials in the theory of Newtonian gravitation and in electricity and magnetism.
 - (a) Assume that the general solution has the form $y(t) = \sum_{n=0}^{\infty} a_n t^n$, and find the recursion formula for a_{n+2} in terms of a_n and a_{n+1} .
 - (b) Use the recursion formula to determine a_n in terms of a_0 and a_1 , for $2 \le n \le 9$.
 - (c) For each $\lambda \in \mathbb{N}$, there will be a single (up to scalar multiples) nonzero polynomial solution $P_{\lambda}(t)$, called the *Legendre polynomial* of degree λ . Find the Legendre polynomial of degree $\lambda = 3$.
 - (d) Find a basis for the solution space to $(1 t^2)y'' 2ty' + 12y = 0$.
- 7. The differential equation y'' ty = 0 is called *Airy's equation*, and is used in physics to model the refraction of light.
 - (a) Assume the solution is a power series, and find the recurrence relation of the coefficients. [*Hint*: When shifting the indices, one way is to let m = n 3, then factor out t^{n+1} and find a_{n+3} in terms of a_n . Alternatively, you can find a_{n+2} in terms of a_{n-1} .]
 - (b) Show that $a_2 = 0$. [*Hint*: the two series for y'' and ty don't "start" at the same power of t, but for any solution, each term must be zero. (Why?)]
 - (c) Find the particular solution when y(0) = 1, y'(0) = 0, as well as the particular solution when y(0) = 0, y'(0) = 1.