1. Consider the following initial value problem:

$$y''' - y = 0$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = 0$

- (a) Assume there is a solution of the form $y(t) = e^{rt}$, and plug this back in and solve for r. Use this to write the general solution. [*Hint*: The equation $r^3 = 1$ has 3 distinct solutions over \mathbb{C} , called the 3rd roots of unity: $r_1 = e^{0\pi i/3} = 1$, $r_2 = e^{2\pi i/3}$, and $r_2 = e^{4\pi i/3}$.]
- (b) From here, you could solve the initial value problem by plugging in the initial conditions, but you'll get a system of three equations with three unknowns, and involving complex numbers. Here's another way: look for a power series solution, $y(t) = \sum_{n=0}^{\infty} a_n t^n$. Plug this back into the ODE and find the recurrence relation for the coefficients.
- (c) Compute a_n for $n \leq 10$, and once you see the pattern, write down the general solution to the ODE as a power series. [*Hint*: It should look familiar!]
- (d) Write down a *basis* for the solution space.
- (e) Plug in the initial conditions and find the particular solution to the initial value problem.
- (f) Consider a similar initial value problem:

$$y''' - y = 0$$
, $y(0) = 1$, $y'(0) = 1$, $y''(0) = 1$

Find y(t).

2. Find the radius of convergence of the following power series.

(a)
$$\sum_{n=0}^{\infty} (-1)^n t^n$$
 (b) $\sum_{n=0}^{\infty} \frac{1}{n+1} (t-\pi)^n$ (c) $\sum_{n=0}^{\infty} \frac{3}{n+1} (t-2)^n$,
(d) $\sum_{n=0}^{\infty} \frac{1}{2^n} (t-\pi)^n$ (e) $\sum_{n=0}^{\infty} (5t-10)^n$ (f) $\sum_{n=0}^{\infty} \frac{1}{n!} (3t-6)^n$

3. The differential equation $(1 - t^2)y'' - ty' + p^2y = 0$, where p is a constant, is known as *Chebyshev's equation*. It can be rewritten in the form

$$y'' + P(t)y' + Q(t)y = 0$$
, $P(t) = -\frac{t}{1-t^2}$, $Q(t) = \frac{p^2}{1-t^2}$.

- (a) If P(t) and Q(t) are represented as a power series about $t_0 = 0$, what is the radius of convergence of these power series?
- (b) Assume that the general solution has the form $\sum_{n=0}^{\infty} a_n t^n$, and find a recurrence for a_{n+2} in terms of a_n . [*Hint*: Before plugging back in, multiply through by $1 t^2$.]

- (c) Use the recurrence to determine a_n in terms of a_0 and a_1 , for $2 \le n \le 9$.
- (d) For each $p \in \mathbb{N}$, there is a unique polynomial solution $T_p(t)$ known as the *Chebyshev* polynomial of degree p. Find $T_3(t)$.
- 4. For each of the following ODEs, determine whether t = 0 is an ordinary or singular point. If it is singular, determine whether it is regular or not. (Remember, first write each ODE in the form y'' + P(t)y' + Q(t)y = 0.)
 - (a) $y'' + ty' + (1 t^2)y = 0$
 - (b) $y'' + (1/t)y' + (1 (1/t^2))y = 0.$
 - (c) $t^2y'' + 2ty' + (\cos t)y = 0.$
 - (d) $t^{3}y'' + 2ty' + (\cos t)y = 0.$

5. Consider the differential equation 3ty'' + y' + y = 0. Since $x_0 = 0$ is a regular singular point, there is a generalized power series solution of the form $y(t) = \sum_{n=0}^{\infty} a_n t^{n+r}$.

- (a) Determine the indicial equation (solve for r) and the recurrence relation for the coefficients.
- (b) Find two linearly independent generalized power series solutions (i.e., a *basis* for the solution space).
- (c) Determine the radius of convergence of each of these solutions. [*Hint*: First compute the radius of convergence of tP(t) and $t^2Q(t)$ and apply Frobenius].
- 6. Consider the differential equation 2ty'' + y' + ty = 0. Since $t_0 = 0$ is a regular singular point, there is a solution of the form $y(t) = \sum_{n=0}^{\infty} a_n t^{n+r}$.
 - (a) Determine the indicial equation (solve for r) and the recursion formula.
 - (b) Find a basis for the solution space and use this to write the general solution.
 - (c) What is the radius of convergence of each of these two linearly independent solutions?
- 7. Consider the differential equation ty'' + 2y' ty = 0.
 - (a) Show that t = 0 is a regular singular point.
 - (b) Show that if $a_0 = 0$, then r = -1 is one solution for the indicial equation.
 - (c) For r = -1 and $a_0 = 0$, find the recurrence relation for a_{n+2} in terms of a_n .
 - (d) Still assuming that $a_0 = 0$, write the solution from (b) as a generalized power series.
 - (e) Write this solution using a standard hyperbolic trigonometric function.