- 1. For this problem, consider the vector space $V = \mathbb{R}^3$ and use the vector dot product as the inner product.
 - (a) Show that the set of vectors $\{v_1, v_2, v_3\}$, where

$$v_1 = (1, 2, -2), \quad v_2 = (0, 1, 1), \quad v_1 = (-4, 1, -1).$$

is an orthogonal set, but not orthonormal.

(b) Normalize v_1 , v_2 , and v_3 to get an *orthonormal* basis of \mathbb{R}^3 . That is, compute the following:

$$\mathcal{B} = \{n_1, n_2, n_3\}$$
 where $n_i = \frac{v_i}{||v_i||}$.

(c) Use the dot product to express the vector w = (1, 2, 3) in terms of n_1 , n_2 , and n_3 . That is, find C_1 , C_2 , and C_3 such that

$$w = C_1 n_1 + C_2 n_2 + C_3 n_3$$

2. Let $\operatorname{Poly}_3(\mathbb{R}) = \{a_3x^3 + a_2x^2 + a_1x + a_0 \mid a_i \in \mathbb{R}\}$, the vector space of polynomials of degree at most 3. Define the following *inner product* on $\operatorname{Poly}_3(\mathbb{R})$:

$$\langle f,g \rangle = \int_{-1}^{1} f(x)g(x) \, dx$$

- (a) Verify that this is indeed an inner product on $\text{Poly}_3(\mathbb{R})$.
- (b) Consider the two sets

$$\mathcal{B}_1 = \{1, x, 3x^2 - 1, 5x^3 - 3x\}, \qquad \mathcal{B}_2 = \{1, x, x^2, x^3\}$$

that are both bases for $\operatorname{Poly}_3(\mathbb{R})$. Show that \mathcal{B}_1 is an orthogonal set, but \mathcal{B}_2 is not. (The set \mathcal{B}_1 are the first four *Legendre polynomials*, $P_n(x)$ for $n = 0, \ldots, 3$. When we study Sturm-Liouville theory, we will see why the Legendre polynomials are always orthogonal!)

- (c) For each $f \in \mathcal{B}_1$, compute the norm of f, which is defined as $||f|| = \langle f, f \rangle^{1/2}$. Find an orthonormal basis for $\operatorname{Poly}_3(\mathbb{R})$ by normalizing the elements in \mathcal{B}_1 .
- (d) Consider the polynomial $f(x) = 3x^3 2x^2 + 4$. Use orthogonality to write f(x) using the elements in \mathcal{B}_1 . That is, find C_0 , C_1 , C_2 , and C_3 such that

$$3x^3 - 2x^2 + 4 = C_0 + C_1x + C_2(3x^2 - 1) + C_3(5x^3 - 3x).$$

- 3. Find the Fourier series of the following functions without computing any integrals.
 - (a) $f(x) = 2 3\sin 4x + 5\cos 6x$,
 - (b) $f(x) = \sin^2 x$. [*Hint*: Use a standard trig identity.]

4. Consider the 2π -periodic function defined by

$$f(x) = \begin{cases} x^2 & -\pi \le x < \pi, \\ f(x - 2k\pi) & -\pi + 2k\pi \le x < \pi + 2k\pi. \end{cases}$$

Sketch this function on $[-7\pi, 7\pi]$ and compute its Fourier series. Feel free to use a computer to evaluate the indefinite integral $\int x^2 \cos nx \, dx$.

5. Let $\operatorname{Per}_{2\pi}(\mathbb{C})$ be the set of piecewise continuous 2π -periodic complex-valued functions, and define the (complex) inner product

$$\langle f,g\rangle = \frac{1}{2\pi} \int_{-pi}^{\pi} f(x)\overline{g(x)} \, dx \,,$$

where $\overline{g(x)}$ denotes the complex conjugate of g(x).

- (a) Verify that this is indeed a complex inner product on $\operatorname{Per}_{2\pi}(\mathbb{C})$.
- (b) Verify that $\mathcal{B} = \{e^{inx} \mid n \in \mathbb{Z}\}$ is an orthonormal set with respect to this inner product. That is, show that for each $f, g \in \mathcal{B}$, we have $\langle f, g \rangle = 1$ if f = g and 0 if $f \neq g$. [*Hint*: Recall that $\overline{e^{inx}} = e^{-inx}$.]
- (c) Given the additional knowledge that \mathcal{B} is an orthonormal *basis* of $\operatorname{Per}_{2\pi}(\mathbb{C})$ (you may assume this), we can write any $f \in \operatorname{Per}_{2\pi}(\mathbb{C})$ uniquely as

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}, \qquad c_n \in \mathbb{C}.$$

Use the results from Parts (a) and (b) to derive a formula for each c_n . [*Hint*: Think of c_n as the magnitude of the "projection" of f(x) onto e^{inx} .]