MthSc 434 (Spring 2012) : Midterm 2

MthSc 434: Advanced Engineering Mathematics (Spring 2012)
: Midterm 2 o
March 29, 2012

NAME: kej

Instructions

o Exam time is 75 minutes
e You may not use notes or books.
e Calculators are not allowed.

e Show your work. Partial credit will be given.

Question | Points Earned | Maximum Points
1 10

2 10

3 10

4 8

5 12

Total 50

Student to your left:

Student to your right:
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1. Solve the following differential equations:

(a) ¥ =ty.
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(b) ¥ +w?y =0, ¥(0) = ¢/(r) = 0. (Make sure you determine all possible values of w, with
justification.)
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2. Consider the sawtooth wave defined as f(z) = z on [, ], and extended to be 2r-periodic. Recall
that the Founer series for f was ,

!

flz) = Z 2 (-1)™ sinnz.

n—l

Now, solve the differential equation
' : ¥ +2y = f(z),

where f(z) is the sawtooth wave defined above. [Hint: Recall that y(z) = yn(z) + yp(z). Take a
moment to think about what type of particular solution this equation will have. For example, will it
have sine terms, cosine terms, or both?]
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3. Consider the function f(z) = z2, for 0 < z < .

(a) Sketch the odd and even extensions of f(z) (for at least —57 < z < 5).
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(b) Compute the Fourier sine series of f(z). You many use the fact that

2z sin(nz) + (2 — n?z2) cos(nx)
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4. For this problem, you will be graded on both the accuracy and the quality of your explanation. Be
complete, concise, and clear.

(a) Carefully define what it means for a set V' to be a vector space over R, and what it means for a
set A to be an affine space.

Vs a webter gca Mo ~ ’y (./JS&J M,- auz\(v’yn. ard S(a,l&"

A i oon &l Spre of L e (a({mﬂ:)) au\.\:)>/ wsA/ He of

{0«»\.} ' o\eA\g 3 . Vecty  cpace.,

(b) Carefully define what a means for a 2nd order differential equation to be linear, and when such
a linear equation is homogeneous. Give a complete but concise summary about what we’ve
learned regarding the structure of the set of solutions to 2nd order linear differential equations
(both homogeneous and inhomogeneous).
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MthSc 434 (Spring 2012)
5. Solve the differential equation 2zy” + v/ + y = 0, by looking for a solution of the form

0 :
y(z) = Z anz"tr.

n=0

That is, find 7, and find the recurrence relation for the coefficients.
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Useful information

o If we define the following inner product on the space of real-valued 2L-perioic functions

L
o =1 [ f@e@)ds,

then the real Fourier series of a 2L-periodic function f(x) is the orthogonal expansion

o0
ap nrx . NET
f(z) = —2—+Zancos—f-+bﬂsmT
n=1 :
where
a,.=(f(z),cos£§£), by = (.f(z)98in$)'

o If we define the following inner product on the space of complex-valued 2L-perioic functions

L e —
(o) =5z [ r@a@ e,

then the complex Fourier series of a 2L-periodic function f is the orthogonal expansion

f(:v)= Z c"ei‘lmz/L

n=-—00

where ¢, = (f(z), e/},

The real and complex Fourier coefficients are related by

_ Ay + ibﬂ Qn — ib‘n

@n =Cn+Cony bn=1i(ch—c_y), 5 Cn =g

For any integer n: cosnmw = (—1)*, €™ = ¢~ = (~1)", sinnw =0.

A function f is even if f(x) = f(—z), and odd if f(z) = —f(—xz).

If f(z) is a function defined on [0, L], then the Fourier cosine series is the Fourier series of the even

extension of f, and the Fourier sine series is the Fourier series of the odd extension of f.
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