MthSc 434: Advanced Engineering Mathematics (Spring 2012) Midterm 2 March 29, 2012

NAME:	Key		·			

Instructions

- Exam time is 75 minutes
- You may not use notes or books.
- Calculators are not allowed.
- Show your work. Partial credit will be given.

Question	Points Earned	Maximum Points
1		10
2		10
3		10
4		8
5		12
Total		50

Student to your left:

Student to your right:

1. Solve the following differential equations:

(a)
$$y'=ty$$
.

(b) $y'' + \omega^2 y = 0$, $y'(0) = y'(\pi) = 0$. (Make sure you determine all possible values of ω , with justification.)

$$y'(\pi) = -\alpha \omega 2\omega (\omega \pi) = 0$$

(unless
$$\alpha = 0$$
 or $w = 0$

$$= y(x) = 0$$

2. Consider the sawtooth wave defined as f(x) = x on $[-\pi, \pi]$, and extended to be 2π -periodic. Recall that the Fourier series for f was

$$f(x) = \sum_{n=1}^{\infty} \frac{2}{n} (-1)^{n+1} \sin nx.$$

Now, solve the differential equation

$$y'+2y=f(x)\,,$$

where f(x) is the sawtooth wave defined above. [Hint: Recall that $y(x) = y_h(x) + y_p(x)$. Take a moment to think about what type of particular solution this equation will have. For example, will it have sine terms, cosine terms, or both?]

$$y'(x) = \frac{q_0}{z} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

$$y'(x) = \sum_{n=1}^{\infty} -n a_n \sin nx + n b_n \cos nx$$

$$y'(x) = \sum_{n=1}^{\infty} -n a_n \sin nx + n b_n \cos nx$$

$$G_0 + \sum_{n=1}^{\infty} \{n \ a_n \ sin \ nx + n \ b_n \ cos \ nx\} + 2a_n \ cos \ nx + 2b_n \ sin \ nx = f(x)$$

$$a_0 + \sum_{n=1}^{\infty} (2a_n + nb_n) \cos nx + (2b_n - na_n) \sin nx = \sum_{n=1}^{\infty} \frac{1}{2} (-1)^{n+1} \sin nx$$

$$a_0=0$$
, $\begin{cases} y p^{\nu} + 3 a^{\nu} = 0 \\ y p^{\nu} - y a^{\nu} = 0 \end{cases}$

$$cv = \frac{A + V_{5}}{5(-1)_{v}}$$

$$cv = \frac{A + V_{5}}{5(-1)_{v}}$$

$$cv = \frac{A + V_{5}}{5(-1)_{v+1}}$$

$$cv = \frac{A + V_{5}}{4(-1)_{v+1}}$$

$$y(x) = (e^{-2t} + \sum_{n=1}^{\infty} \frac{2(-1)^n}{4+n^2} \cos nx + \frac{4(-1)^{n+1}}{n(4+n^2)} \sin nx$$

$$y_n(x) + y_p(x)$$

- 3. Consider the function $f(x) = x^2$, for $0 \le x \le \pi$.
 - (a) Sketch the odd and even extensions of f(x) (for at least $-5\pi \le x \le 5\pi$).

ever

(b) Compute the Fourier sine series of f(x). You many use the fact that

$$\int x^2 \sin nx \ dx = \frac{2x \sin(nx)}{n^2} + \frac{(2 - n^2 x^2) \cos(nx)}{n^3}$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} x^2 \sin nx \, dx$$

$$=\frac{2}{\pi}\left[\begin{array}{c} 2\times 5\times n\times \\ \end{array}\right. + \left(\frac{2-n^2\times^2)\cos(n\times)}{n^3}\right]_0^{\pi}$$

$$= \frac{2}{\pi \Lambda^{3}} \left((2 - n^{2} \pi^{2}) (-1)^{2} - 2 \right)$$

$$f(x) = \sum_{N=1}^{\infty} \frac{2}{\pi^{N}} ((2-n^{2}\pi^{2})(-1)^{2} - 2) S/N NX$$

- 4. For this problem, you will be graded on both the accuracy and the quality of your explanation. Be complete, concise, and clear.
 - (a) Carefully define what it means for a set V to be a vector space over \mathbb{R} , and what it means for a set A to be an affine space.

V is a vector space if it is closed under addition and scalar multiplication.

A is an affine space if for some (actually, any), weA, the set $\{a-w \mid a\in A\}$ is a vector space.

(b) Carefully define what a means for a 2nd order differential equation to be *linear*, and when such a linear equation is *homogeneous*. Give a complete but concise summary about what we've learned regarding the structure of the set of solutions to 2nd order linear differential equations (both homogeneous and inhomogeneous).

A 2nd order order is linear, if it can be written as y'' + a(+) y' + b(+) y = f(+),

and homogeneous if f(t)=0.

The set of solutions to a 2rd order linear equation form either a vector space (if its homogeneous) or an aftern space (if its inhomogeneous)

$$y(x) = \sum_{n=0}^{\infty} a_n x^{n+r} .$$

That is, find r, and find the recurrence relation for the coefficients.

$$y'(x) = \sum_{n=0}^{\infty} (n+r) a_n x^{n+r-1}, \quad y''(x) = \sum_{n=0}^{\infty} (n+r-1)(n+r) a_n x^{n+r-2}$$

$$\sum_{n=0}^{\infty} 2(n+r-1)(n+r) a_n x^{n+r-1} + \sum_{n=0}^{\infty} (n+r) a_n x^{n+r-1} + \sum_{n=0}^{\infty} a_n x^{n+r-2} +$$

Useful information

• If we define the following inner product on the space of real-valued 2L-perioic functions

$$\langle f,g\rangle = \frac{1}{L} \int_{-L}^{L} f(x)g(x) dx$$
,

then the real Fourier series of a 2L-periodic function f(x) is the orthogonal expansion

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L}$$

where

$$a_n = \langle f(x), \cos \frac{n\pi x}{L} \rangle, \qquad b_n = \langle f(x), \sin \frac{n\pi x}{L} \rangle.$$

• If we define the following inner product on the space of complex-valued 2L-perioic functions

$$\langle f,g\rangle = \frac{1}{2L} \int_{-L}^{L} f(x) \overline{g(x)} \, dx$$

then the complex Fourier series of a 2L-periodic function f is the orthogonal expansion

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{i\pi nx/L}$$

where $c_n = \langle f(x), e^{i\pi nx/L} \rangle$.

• The real and complex Fourier coefficients are related by

$$a_n = c_n + c_{-n}, \quad b_n = i(c_n - c_{-n}), \quad c_n = \frac{a_n + ib_n}{2}, \quad c_{-n} = \frac{a_n - ib_n}{2}.$$

- For any integer n: $\cos n\pi = (-1)^n$, $e^{in\pi} = e^{-in\pi} = (-1)^n$, $\sin n\pi = 0$.
- A function f is even if f(x) = f(-x), and odd if f(x) = -f(-x).
- If f(x) is a function defined on [0, L], then the Fourier cosine series is the Fourier series of the even extension of f, and the Fourier series is the Fourier series of the odd extension of f.