Read: Stahl, Chapters 4.1, 4.2, 4.3.

- 1. In this problem, we will prove Proposition 3.1.3 in Stahl in a more rigorous and elegant fashion, using only the analytic methods we developed in class.
 - (a) Let f be a Euclidean isometry, let p_0 be a circle, and let $f(p_0) = p_1$. Prove that if $I_{C,k}$ maps p_0 to a circle, then $f \circ I_{C,k} \circ f^{-1}$ maps p_1 to a circle.
 - (b) Let f be a Euclidean isometry, let ℓ_0 be a line, and let $f(\ell_0) = \ell_1$. Prove the if $I_{C,k}$ maps ℓ_0 to a line, then $f \circ I_{C,k} \circ f^{-1}$ maps ℓ_1 to a line.
 - (c) Prove that if p is a circle and q is either a circle or a line, then there exists $g \in \text{Isom}(\mathbf{E}^2)$ such that g(p) is centered at the origin, and g(q) is orthogonal to the x-axis.
 - (d) Prove that if $I_{O,k}$ maps circles and lines orthogonal to the x-axis to circles and lines, then for any $C \in \mathbf{E}^2$, $I_{C,k}$ maps circles and lines to circles and lines. Draw the appropriate commutative diagram illustrating your argument.
 - (e) Let p be a circle. Prove the following:
 - i. If p does not contain C, then $I_{C,k}(p)$ is a circle not containing p;
 - ii. If p contains C, then $I_{C,k}(p)$ is a straight line not containing p.
- 2. In this problem we will prove Proposition 3.1.7 analytically: Let p be the circle of center C and radius k, and let q be any other circle in $\mathbf{E}^2 \setminus C$. Then $I_{C,k}$ sends q to itself if and only if q is orthogonal to p.
 - (a) Prove that it is enough to prove that proposition for the case where the cetners of p and q are on the x-axis.
 - (b) Prove that the proposition for the case where the centers of p and q are on the x-axis. You may find the following facts useful:
 - i. Let q be a circle with center C, and let P be a point on q. Then the tangent line to q at P is orthogonal to \overline{CP} .
 - ii. In the triangle below, $a^2 + b^2 = c^2$ if and only if $\theta = \pi/2$. (This follows from the law of cosines.)

- 3. Prove Proposition 4.1.2 in Stahl: The hyperbolic length of the Euclidean line segment joining the points $P = (a, y_1)$ and $Q = (a, y_2)$, where $0 < y_1 \le y_2$, is $\ln(y_2/y_1)$. Do not use any later results that trivialize the problem.
- 4. Find the inversion $I_{C,k}$ that takes the bowed geodesic from (-4,0) to (2,0) to the bowed geodesic from (10,0) to (20,0).

- 5. Given a hyperbolic geodesic γ and a point P on γ , describe a Euclidean method for constructing a hyperbolic geodesic through P that is orthogonal to γ .
- 6. Given a hyperbolic geodesic γ and a point P not on γ , describe a Euclidean method for constructing a hyperbolic geodesic through P that is orthogonal to γ .