Read: Stahl, Chapters 9.3, 9.4, 9.5.

1. Let Z be the set of 2×1 nonzero column vectors over \mathbb{C} , and let \mathcal{Z} be the set of equivalence classes of Z generated by the equivalence relation that $\mathbf{w} \sim \mathbf{z}$ if $\mathbf{w} = \lambda \mathbf{z}$ for some $\lambda \in \mathbb{C}^{\times}$. Let $\Phi: \mathcal{Z} \mapsto \hat{\mathbb{C}}$ be defined by the rule

$$\lambda \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \stackrel{\Phi}{\longmapsto} \begin{cases} \frac{z_1}{z_2} & \text{if } z_2 \neq 0 \\ \infty & \text{otherwise.} \end{cases}$$

- (a) Show that Φ is bijective.
- (b) The group $\operatorname{GL}_2(\mathbb{R})$ acts on \mathcal{Z} by the rule

$$\mathbf{A}.\mathbf{z} = \begin{cases} \mathbf{A}\mathbf{z} & \text{if det } \mathbf{A} > 0 \\ \mathbf{A}\bar{\mathbf{z}} & \text{if det } \mathbf{A} < 0, \end{cases}$$

with the convention that $\frac{a\infty + b}{c\infty + d} = \frac{a}{c}$ and $\frac{a}{0} = \infty$. Show that

$$\Phi(\mathbf{A}.\mathbf{z}) = \mu_A(\Phi(\mathbf{z}))\,,$$

where μ is the Möbius map. [*Hint*: Consider $\mathbf{z} = \begin{pmatrix} z \\ 1 \end{pmatrix}$.]

- 2. This problem completes the proof of the classification of hyperbolic isometries.
 - (a) Show that ker $\mu = Z(GL_2(\mathbb{R}))$.
 - (b) Prove that $\text{Isom}(\mathbf{H}^2) \cong \text{PGL}_2(\mathbb{R})$.
- 3. This problem proves that $PGL_2(\mathbb{R})$ acts 3-transitively on ideal points, and is completely determined by where it sends 0, 1, and ∞ .
 - (a) Prove that there is an element of PGL₂(ℝ) which sends (0, 1, ∞) to any three distinct points (a, b, c) of ℝ̂, in that order.
 - (b) What can you say about an element of $PGL_2(\mathbb{R})$ that fixes 0, 1, and ∞ ?
 - (c) Prove that any elements of $PGL_2(\mathbb{R})$ is uniquely determined by where it sends 0, 1, and ∞ .
- 4. Prove that every ideal triangle has area π .
- 5. Let f be an orientation-reversing element of Isom(\mathbf{H}^2) such that $f(\infty) = \infty$.
 - (a) Prove that f also fixes a point in \mathbb{R} .
 - (b) If we additionally know that f(0) = 0, prove that $f(z) = a\overline{z}$ for some a < 0.
- 6. Let f be an orientation-reversing element of $\text{Isom}(\mathbf{H}^2)$.
 - (a) Prove that f fixes two points in \mathbb{R} .
 - (b) Prove that f is conjugate to some orientation-reversing element of $\text{Isom}(\mathbf{H}^2)$ that fixes both 0 and ∞ .