1. Let \mathcal{P}_2 be the vector space of all polynomials $p(x) = a_0 + a_1 x + a_2 x^2$ over \mathbb{R} , with degree ≤ 2 . Let ξ_1, ξ_2, ξ_3 be distinct real numbers, and define

$$\ell_j = p(\xi_j) \text{ for } j = 1, 2, 3.$$

- (a) Show that ℓ_1, ℓ_2, ℓ_3 are linearly independent functions on \mathcal{P}_2 .
- (b) Show that ℓ_1, ℓ_2, ℓ_3 is a basis for the dual space \mathcal{P}'_2 .
- (c) Find polynomials $p_1(x), p_2(x), p_3(x)$ in \mathcal{P}_2 of which ℓ_1, ℓ_2, ℓ_3 is the dual basis in \mathcal{P}'_2 .
- 2. Let W be the subspace of \mathbb{R}^4 spanned by (1, 0, -1, 2) and (2, 3, 1, 1). Which linear functions $\ell(x) = c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4$ are in the annihilator of W? Write your answer by giving an explicit basis of W^{\perp} .
- 3. Let $T: X \to U$ be a linear map. Prove the following:
 - (a) The image of a subspace of X is a subspace of U.
 - (b) The inverse image of a subspace of U is a subspace of X.
- 4. Prove Theorem 3.3 in Lax:
 - (a) The composite of linear mappings is also a linear mapping.
 - (b) Composition is distributive with respect to the addition of linear maps, that is,

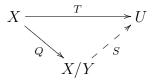
$$(R+S) \circ T = R \circ T + S \circ T$$

and

$$S \circ (T+P) = S \circ T + S \circ P,$$

where $R, S: U \to V$ and $P, T: X \to U$.

- 5. Let X be a finite-dimensional vector space over K and let $\{x_1, \ldots, x_n\}$ be an ordered basis for X. Let U be a vector space over the same field K but possibly with a different dimension, and let $\{u_1, \ldots, u_n\}$ be an arbitrary set of vectors in U. Show that there is precisely one linear transformation $T: X \to U$ such that $Tx_i = u_i$ for each $i = 1, \ldots, n$.
- 6. Let X and U be vector spaces, and suppose that Y is a subspace of X. Let $Q: X \to X/Y$ be the canonical quotient map sending $x \xrightarrow{Q} \{x\}$, and let $T: X \to U$ be a linear map. Give necessary and sufficient conditions for the existence of a unique linear map $S: X/Y \to U$ such that $T = S \circ Q$. When this happens, the map T is said to factor through the quotient space, as shown by the following commutative diagram:



Prove all of your claims.