Read: Lax, Chapter 4, pages 32-43.

1. Let $T: X \to U$, with dim X = n and dim U = m. Show that there exist bases B for X and B' for U such that the matrix of T in block form is

$$M = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}$$

where I_k is the $k \times k$ identity matrix, and the other blocks are either empty or contain all zeros.

- 2. Consider the linear map $T: \mathbb{R}^3 \to \mathbb{R}^3$ with matrix representation $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & -2 \\ -3 & 0 & 3 \end{bmatrix}$ with respect to the standard basis. What is the matrix representation of T with respect to the basis $\{(1, -1, 0), (0, 1, -1), (1, 0, 1)\}$?
- 3. Let \mathcal{P}_n be the vector space of all polynomials over \mathbb{R} of degree less than n.
 - (a) Show that the map $T: \mathcal{P}_3 \to \mathcal{P}_4$ given by

$$T(p(x)) = 6 \int_1^x p(t) dt$$

is linear. Indicate whether it is 1–1 or onto.

- (b) Let $B_3 = \{1, x, x^2\}$ be a basis for \mathcal{P}_3 and let $B_4 = \{1, x, x^2, x^3\}$ be a basis for \mathcal{P}_4 . Find the matrix representation of T with respect to these bases.
- 4. Find necessary and sufficient conditions on the entries u_1, u_2, u_3, u_4 under which the following system of linear equations will have at least one solution over $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, and give the number of solutions in case the conditions are met.

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 1 & 0 & 3 \\ 1 & -1 & -1 & 2 \\ 0 & 3 & 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}.$$

5. Consider the system of linear equations Tx = u, where

$$T = \begin{bmatrix} 0 & 2 & -2 \\ 3 & 5 & -2 \\ 4 & 0 & 4 \end{bmatrix}, \qquad u = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}.$$

- (a) Solve Tx = u over \mathbb{R} .
- (b) Solve Tx = u over \mathbb{Z}_2 .