1. Let S_n denote the set of all permutations of $\{1, \ldots, n\}$.

 (a) Prove that $\text{sgn}(\pi_1 \circ \pi_2) = \text{sgn}(\pi_1) \text{sgn}(\pi_2)$.

 (b) Let $\pi \in S_n$, and suppose that $\pi = \tau_k \circ \cdots \circ \tau_1 = \sigma_\ell \circ \cdots \circ \sigma_1$, where $\tau_i, \sigma_j \in S_n$ are transpositions. Prove that $k \equiv \ell \mod 2$.

2. Let X be an n-dimensional vector space over a field K.

 (a) Prove that if the characteristic of K is not 2, then every skew-symmetric form is alternating.

 (b) Give an example of a non-alternating skew-symmetric form.

 (c) Give an example of a non-zero alternating k-linear form ($k < n$) such that $f(x_1, \ldots, x_k) = 0$ for some set of linearly independent vectors x_1, \ldots, x_k.

3. Let X be a 2-dimensional vector space over \mathbb{C}, and let $f: X \times X \to \mathbb{C}$ be an alternating, bilinear form. If $\{x_1, x_2\}$ is a basis of X, determine a formula for $f(u, v)$ in terms of $f(x_1, x_2)$, and the coefficients used to express u and v with this basis.

4. Let X be an n-dimensional vector space over \mathbb{R}, and let f be a non-degenerate symmetric bilinear form. That is, it has the additional property that for all nonzero $x \in X$, there is some $y \in X$ for which $f(x, y) \neq 0$.

 (a) Prove that if f is non-degenerate, the map $L: X \to X'$ given by $L: x \mapsto f(x, -)$ is an isomorphism.

 (b) Show that, given any basis x_1, \ldots, x_n for X, there exists a basis y_1, \ldots, y_n such that $f(x_i, y_j) = \delta_{ij}$.

 (c) Conversely, prove that if $B_X = \{x_1, \ldots, x_n\}$ and $B_Y = \{y_1, \ldots, y_n\}$ are sets of vectors in X with $f(x_i, y_j) = \delta_{ij}$, then B_X and B_Y are bases for X.

5. Let X be an n-dimensional vector space over \mathbb{R}, and let f be a non-degenerate symmetric bilinear form.

 (a) Show that there exists $x_1 \in X$ with $f(x_1, x_1) \neq 0$.

 (b) Fix $x_1 \in X$ with $f(x_1, x_1) \neq 0$, and define T by $T: x \mapsto f(x, x_1)$. What is the rank of T?

 (c) Let $Z = \ker T$. Show that the restriction of f to $Z \times Z$ is again non-degenerate.

 (d) Prove that X has a basis $\{x_1, \ldots, x_n\}$ such that $f(x_i, x_i) \neq 0$ for all i.

 (e) Prove or disprove that $f(x_i, x_j) = 0$ whenever $i \neq j$.

 (f) Give an example of a vector space X ($2 \leq \dim X < \infty$) with basis B and a non-degenerate symmetric bilinear form f for which $f(x, x) = 0$ for all $x \in B$.

6. Let $A = (c_1, \ldots, c_n)$ be an $n \times n$ matrix (c_i is a column vector), and let B be the matrix obtained from A by adding k times the i^{th} column of A to the j^{th} column of A, for $i \neq j$. Prove that $\det A = \det B$.

Read: Lax, Chapter 5, pages 44–57.