Read: Lax, Chapter 7, pages 77–100.

1. Prove that $\|x\| = \max\{\langle x, y \rangle : y \in K^n \text{ with } \|y\| = 1\}$.

2. Let f and g be continuous functions on the interval $[0, 1]$. Prove the following inequalities.

 (a) $\left(\int_0^1 f(t)g(t) \, dt \right)^2 \leq \int_0^1 f(t)^2 \, dt \int_0^1 g(t)^2 \, dt$

 (b) $\left(\int_0^1 (f(t) + g(t))^2 \, dt \right)^{1/2} \leq \left(\int_0^1 f(t)^2 \, dt \right)^{1/2} + \left(\int_0^1 g(t)^2 \, dt \right)^{1/2}$.

3. Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by $y_1 = (1, 2, 1, 1)$, $y_2 = (1, -1, 0, 2)$ and $y_3 = (2, 0, 1, 1)$.

4. Let X be the vector space of all continuous real-valued functions on $[0, 1]$. Define an inner product on X by

 $$(f, g) = \int_0^1 f(t)g(t) \, dt.$$

 Let Y be the subspace of X spanned by f_0, f_1, f_2, f_3, where $f_k(x) = x^k$. Find an orthonormal basis for Y.

5. Let Y be a subspace of a Euclidean space X, and $P_Y : X \to X$ the orthogonal projection onto Y. Prove that $P_Y^* = P_Y$.

6. Show that a matrix M is orthogonal iff its column vectors form an orthonormal set.

7. Let X be an n-dimensional real Euclidean space, and $A : X \to X$ a linear map. Define the map $f : X \to X$ by $f(x, y) = x^TAy$. Give (with proof) necessary and sufficient conditions on A for f to be an inner product on X.