Throughout, all vector spaces are finite-dimensional over a field K. You may assume that these spaces are endowed with a Euclidean structure, though this is not always needed. The set of linear maps from X to U is denoted by Hom(X, U).

1

Read: Lax, Chapter 10, pages 143–153, and Appendix 4, pages 313–316.

- 1. Define the *index* of a real symmetric matrix A to be the number of strictly positive eigenvalues minus the number of strictly negative eigenvalues. Suppose A and B are real symmetric matrices and $x^T A x \leq x^T B x$ for all $x \in X$. Prove that the index of A is at most the index of B.
- 2. Let A, B be self-adjoint mappings with 0 < A < B. Here, < is the partial ordering of self-adjoint mappings where A < B iff N A is positive-definite.
 - (a) Show by example that the symmetrized product S := AB + BA need not be positivedefinite.
 - (b) Show that $A^{1/k} < B^{1/k}$ if k is a power of 2.
 - (c) Show that $\log A \leq \log B$.
 - (d) Show by example that $A^2 < B^2$ need not hold.
- 3. Let U and V be vector spaces over a field K. Define the map

 $\varphi \colon U \otimes V \longrightarrow \operatorname{Hom}(U', V), \qquad \varphi \colon u \otimes v \longmapsto \{\ell \mapsto (\ell, u)v\},$

and extend linearly to arbitrary elements $\sum (u_i \otimes v_i)$ in $U \otimes V$. Prove that φ is an isomorphism.

4. Let U, V, and X by vector spaces over a field K. Define a map

$$\iota \colon U \times V \longrightarrow U \otimes V \,, \qquad \iota(u,v) = u \otimes v \,.$$

- (a) Prove that ι is bilinear.
- (b) Prove that if $A \in \text{Hom}(U \otimes V, X)$, then $\alpha := A \circ \iota$ is a bilinear map from $U \times V$ to X.
- (c) Prove that for any bilinear map $\tau: U \times V \to X$, there is a unique $A \in \text{Hom}(U \otimes V, X)$ such that $\alpha = A \circ \iota$. This is the *universal property* of the tensor product, and is summarized by the following commutative diagram:

- 5. Use the universal property of the tensor product to prove the following results:
 - (a) $U \otimes V \cong V \otimes U$ (hint: let $X = V \otimes U$);
 - (b) $(U \otimes V) \otimes W \cong U \otimes (V \otimes W);$
 - (c) $(U \times V) \otimes W \cong (U \otimes W) \times (V \otimes W)$.