6. Spectral theory:

Def: Let A be an $n \times n$ matrix. A vector v satisfying $Av = \lambda v$ for some $\lambda \in \mathbb{K}$, is called an eigenvector of A; λ is called an eigenvalue of A.

Throughout, we'll assume that our field \mathbb{K} is algebraically closed, i.e., every polynomial in $\mathbb{K}[x]$ has a root in \mathbb{K}.

The most common algebraically closed field is $\mathbb{K} = \mathbb{C}$.

Prop: A has an eigenvector.

Proof: Pick any $0 \neq w \in \mathbb{C}^n$, consider the following:
$$w, \, Aw, \, A^2w, \ldots, \, A^nw.$$ Since $\dim \mathbb{C}^n = n$, these vectors are linearly dependent. Thus, we can write $0 = c_0w + c_1Aw + \ldots + c_nA^nw$
$$= p(A)w$$
where $p(x) = c_0 + c_1x + \ldots + c_nx^n \in \mathbb{K}[x]$.

Since \mathbb{K} is closed, $p(x) = c \prod_{j=1}^{n} (x - \lambda_j), \quad c \neq 0$
and so $p(A)w = c \prod_{j=1}^{n} (A - \lambda_j I)w = 0$.

Now, one of $A - \lambda_jI$ must be non-invertible. (Because
\(p(A) \) is non-invertible. Suppose \(A - dI \) is non-invertible, and pick \(v \neq 0 \) in the nullspace of \(A - dI \).

Then, \((A - dI)v = 0 \Rightarrow Av - d v = 0 \Rightarrow Av = dv. \)

Remark: By Corollary to Theorem 5.7, \(A - dI \) is non-invertible iff \(\det(A - dI) = 0 \). Thus, \(\lambda \) is an eigenvalue of \(A \) iff \(\det(A - dI) = 0 \), and this is how we find all eigenvalues of \(A \).

Example: \(A = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix} \).

\[\det(A - dI) = \det \begin{pmatrix} 3 - d & 2 \\ 1 & 4 - d \end{pmatrix} = (3 - d)(4 - d) - 2 \\ = \lambda^2 - 7\lambda + 10 = (\lambda - 2)(\lambda - 5). \]

Thus, \(A \) has two eigenvalues: \(\lambda_1 = 2, \lambda_2 = 5 \).

Now, let's find the eigenvectors:

\(\lambda_1 = 2 \): Find \(v_1 \) such that \((A - 2I)v_1 = 0\).

\((A - 2I)v = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow x_1 + 2x_2 = 0 \Rightarrow x_1 = -2x_2 \)

Thus, \(v_1 = \begin{pmatrix} -2c \\ c \end{pmatrix} \) is an eigenvector for any \(c \).

\(\lambda_2 = 5 \): Find \(v_2 \) such that \((A - 5I)v_2 = 0\).

\((A - 5I)v = \begin{pmatrix} -2 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow -2x_1 + 2x_2 = 0 \Rightarrow x_1 = x_2. \)

Thus, \(v_2 = \begin{pmatrix} -c \\ c \end{pmatrix} \) is an eigenvector for any \(c \).

We'll say \(A \) has eigenvalues \(\lambda_1 = 2, \lambda_2 = 5 \), eigenvectors \(v_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \).
Here, \(v_1 \) and \(v_2 \) are linearly independent. Thus, for any \(x \in \mathbb{R}^2 \),
we can write \(x = a_1 v_1 + a_2 v_2 \).

Consider \(A^N \) for large \(N \).
\[
A^N x = A^N (a_1 v_1 + a_2 v_2) = a_1 A^N v_1 + a_2 A^N v_2 = a_1 \lambda_1^N v_1 + a_2 \lambda_2^N v_2 = 2^N a_1 v_1 + 5^N a_2 v_2.
\]
Since \(2^N \) and \(5^N \to \infty \) as \(N \to \infty \), it makes sense to say that \(A^N x \to \infty \) as \(N \to \infty \).

Note: The entries in \(A^N \) grow asymptotically as \(\sim 5^N \), the largest eigenvalue.

Def: The characteristic polynomial of an \(n \times n \) matrix \(A \) is
\[
\rho_A(s) = \det(sI - A).
\]

Remarks: \(\rho_A(s) \) has degree \(n \), and its roots are the eigenvalues of \(A \). Moreover, if \(K \) is closed (e.g. \(K = \mathbb{C} \)), then all \(n \) roots lie in \(K \).

Theorem 6.1: Eigenvectors of \(A \) corresponding to distinct eigenvalues are linearly independent.

Proof: Let \(\lambda_1, \ldots, \lambda_k \) be pairwise distinct eigenvalues, with
eigenvectors \(v_1, \ldots, v_k \) (all non-zero).

Suppose \(\sum_{j=1}^{n} c_j v_j = 0 \), where \(m \) is minimal, non-zero.
(\(m \) clearly, \(c_j \neq 0 \)).
Apply \(A \): \[c_1 v_1 + \cdots + c_m v_m = 0 \]
\[A(v_1) + \cdots + A(v_m) = 0 \]
\[\Rightarrow c_1 A v_1 + \cdots + c_m A v_m = 0 \]
\[\Rightarrow c_1 \lambda v_1 + \cdots + c_m \lambda v_m = 0 \]

We now have \(\sum_{j=1}^{m} c_j v_j = 0 \) and \(\sum_{j=1}^{m} c_j \lambda_j v_j = 0 \).

Thus, \((\lambda_m \sum_{j=1}^{m} c_j v_j) - (\sum_{j=1}^{m} c_j \lambda_j v_j) = \sum_{j=1}^{m-1} (c_j \lambda_m - c_j \lambda_j) v_j = 0 \).

This contradicts minimality of \(m \).

Thus, \(v_1, \ldots, v_m \) must be linearly independent. \(\square \)

Corollary 6.2: If \(A \) has \(n \) distinct eigenvalues, then it has \(n \) linearly independent eigenvectors.

In this case, the eigenvectors form a basis for \(X \), and it is easy to compute \(A^n x \), for any \(x \in X \):

Write \(x = \sum_{j=1}^{n} a_j v_j \) \(\Rightarrow \) eigenvectors \(v_1, \ldots, v_n \).

\[A^n x = \sum_{j=1}^{n} a_j A^n v_j = \sum_{j=1}^{n} a_j \lambda_j^n v_j \]

Theorem 6.3: If the eigenvalues of \(A \) are \(\lambda_1, \ldots, \lambda_n \), then
\[\sum_{i=1}^{n} \lambda_i = \text{tr} A \quad \text{and} \quad \prod_{i=1}^{n} \lambda_i = \det A \]

Proof: Claim: \(p_A(s) = s^n - (\text{tr} A) s^{n-1} + \cdots + (-1)^n \det A \).

Write \(p_A(s) = \prod_{i=1}^{n} (s - \lambda_i) \).

Note: \(s^{n-1} \) coefficient = \(-\sum_{i=1}^{n} \lambda_i \), constant term = \((-1)^n \prod_{i=1}^{n} \lambda_i \).
To prove our claim, compute

\[p_n(t) = \det(sI - A) = \det \begin{pmatrix} s - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & s - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & s - a_{nn} \end{pmatrix} \]

Recall that \[\det A = \sum_{\pi \in S_n} \text{sgn}(\pi) a_{\pi(1),1} \cdots a_{\pi(n),n} \]

Thus, \[\det(sI - A) = \sum_{\pi \in S_n} \text{sgn}(\pi) \prod_{i=1}^n (s \delta_{\pi(i),i} - a_{\pi(i),i}) \]

Clearly, the \((n-1)\)-coefficient is \[-\sum_{i=1}^n a_{ii} = tr(A) \quad \checkmark \]

and the constant term is \[\det(-A) = (-1)^n \det(A). \]

Remark: If \(Av = \lambda v \), then \(A^2v = \lambda^2v \). Thus, if \(\lambda \) is an eigenvalue of \(A \), then \(\lambda^n \) is an eigenvalue of \(A^n \).

Let's take this further. Let \(q(s) \in K[s] \) be any polynomial, say \(q(s) = \sum_{i=1}^n a_is^i \).

If \(Av = \lambda v \), then \(A^iv = \lambda^iv \)

\[\Rightarrow q(A)v = \sum_{i=1}^n a_i A^iv = \sum_{i=1}^n a_i \lambda^iv = q(\lambda)v. \]

Thus, \(q(\lambda) \) is an eigenvalue of \(q(A) \). In fact, the converse holds too:

Theorem 6.9: ("Spectral mapping theorem"). Let \(A \) have eigenvalue \(\lambda \), and let \(q(s) \in K[s] \).

(a) \(q(\lambda) \) is an eigenvalue of \(q(A) \).

(b) Conversely, every eigenvalue of \(q(A) \) is of the form \(q(\lambda) \).
Proof: (a) We just did this.

(b) Let μ be an eigenvalue of $g(A)$ \iff $\det(g(A) - \mu I) = 0$.

Consider $g(s) - \mu = c \prod_{i=1}^{n} (s - r_i), \quad r_i \in \mathbb{C}$.

and $g(A) - \mu I = c \prod_{i=1}^{n} (A - r_i I)$

Since $g(A) - \mu I$ is not invertible, one of $A - r_i I$ is not invertible \iff some r_i is an eigenvalue of A.

Since r_i is a root of $g(s) - \mu$, $g(r_i) = \mu$.

\[\square \]

Remark: In the case when $g(s) = p_A(s)$, we conclude that all eigenvalues of $p_A(A)$ are zero. Actually, even more is true.

\textbf{Theorem 6.5 (Cayley-Hamilton theorem).} Every matrix satisfies its characteristic polynomial: $p_A(A) = 0$.

\textbf{Proof:} Case 1: All eigenvalues are distinct.

By Theorem 6.2, A has n linearly independent eigenvectors v_1, \ldots, v_n. Each eigenvalue λ_i is a root of $p_A(s)$.

Thus, for any $x \epsilon \mathbb{R}^n$, write $x = c_1 v_1 + \cdots + c_n v_n$.

$$p_A(A)x = \sum_{i=1}^{n} p_A(A) c_i v_i = \sum_{i=1}^{n} p_A(\lambda_i) c_i v_i = \sum_{i=1}^{n} 0 = 0.$$ \[\checkmark \]

For the general case (non-distinct eigenvalues), we need an additional lemma:
Lemma 6.6: Let P and Q be polynomials with matrix coefficients:

$$P(t) = \sum P_j t^j, \quad Q(s) = \sum Q_k s^k,$$

and let $R = PQ$.

Then, $R(t) = \sum R_k t^k$ with $R_k = \sum_{j+k=k} P_j Q_k$.

Moreover, if A commutes with the Q_k's, then $P(A)Q(A) = R(A)$.

Proof: Exercise.

Now, let $Q(s) = s I - A$, $P(s) = (P_{ij}(s))$, $P_{ij}(s) = (-1)^{ij} D_{ij}(s)$

where $D_{ij}(s)$ is the determinant of the ijth minor of $Q(s)$.

Recall Theorem 5.12, the formula for a matrix inverse:

$$(Q^{-1})_{ki} = (-1)^{i+k} \frac{\det Q_{ik}}{\det Q}$$

In our context, this means that $(Q(s))^{-1} = \frac{1}{\det Q(s)} P(s)$.

Put $R(s) = P(s)Q(s) = (\det Q(s)) I = P_A(s) I$.

Clearly, A commutes with the coefficients of $Q(s)$, and $Q(A)=0$.

By Lemma 6.6, $R(A) = P(A)Q(A) = P_A(A) I = 0 \Rightarrow P_A(A)=0$.

Example:

(i) $A = I$, then $P_A(s) = \det (sI-I) = (s-1)^n$

$\Rightarrow \lambda = 1$ is an eigenvalue with multiplicity n.

$A-I=0$, so $(A-I)v=0$ for all v.

Thus, every vector is an eigenvector of A.

(2) \(A = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix} \). \(\text{tr } A = 2 \), \(\det A = 1 \), so
\[p_A(s) = s^2 - 2s + 1 = (s - 1)^2, \] so \(\lambda_1 = \lambda_2 = 1 \).

To find the eigenvectors: \((A - I)v = \begin{pmatrix} 2 & 2 \\ -2 & -2 \end{pmatrix}v = 0 \Rightarrow x_1 + x_2 = 0 \Rightarrow v = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \) is an eigenvector (and every multiple is too). However, this is the only eigenvector.

Prop: If \(A \) has only one eigenvalue \(\lambda \), and \(n \) linearly independent eigenvectors, then \(A = \lambda I \).

Proof: Pick \(x \in \mathbb{R}^n \), and write \(x = a_1 x_1 + \ldots + a_n x_n \).

\[Ax = a_1 Ax_1 + \ldots + a_n Ax_n = a_1 \lambda x_1 + \ldots + a_n \lambda x_n = \lambda (a_1 x_1 + \ldots + a_n x_n) = \lambda x. \]

Remark: Every 2x2 matrix with \(\text{tr } A = 2 \), \(\det A = 1 \), has \(\lambda = 1 \) as a double root of \(p_A(s) \). These matrices form a 2-parameter family, and only \(A = I \) has 2 linearly independent eigenvectors.

In cases like these, we have a notion of "generalized eigenvectors."

Suppose \(\lambda \) is an eigenvalue with multiplicity \(m \), but only one eigenvector, \(v_1 \).

Then \((A - \lambda I)v_1 = 0\).

Since \(\text{rank } (A - \lambda I) = m - 1 \), there is some \(v_2 \) such that
\[(A - \lambda I)v_2 = v_1 \Rightarrow (A - \lambda I)v_2 = 0. \]
Similarly, we can find \(v_3 \) such that
\[(A-\lambda I)v_3 = v_2 \Rightarrow (A-\lambda I)^2v_3 \neq 0 \text{ but } (A-\lambda I)^3v_3 = 0.\]

Picture of this: \[V_m \rightarrow A-\lambda I \rightarrow \ldots \rightarrow V_3 \rightarrow A-\lambda I \rightarrow V_2 \rightarrow A-\lambda I \rightarrow V_1 \rightarrow A-\lambda I \rightarrow 0\]

Def: The **algebraic multiplicity** of an eigenvalue \(\lambda \) is the largest \(m \) such that \((s-\lambda)^m\) appears as a factor of \(p_A(s)\).

The **geometric multiplicity** of \(\lambda \) is the number of linearly independent eigenvectors it has, or equivalently, the rank of the nullspace of \(A-\lambda I \).

Def: A vector \(v \) is a **generalized eigenvector** of \(A \) with eigenvalue \(\lambda \) if \((A-\lambda I)^m v = 0\) for some \(m \in \mathbb{N}\).

Example: \(A = \begin{pmatrix} 3 & 2 \\ -2 & 1 \end{pmatrix} \), which has \(\lambda_1 = \lambda_2 = 1 \), \(v = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \).

To find a generalized eigenvector \(v_2 \), we need to solve
\[(A-\lambda I)v_2 = v_1 \Rightarrow \begin{pmatrix} 2 & 2 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \]

\[\Rightarrow \begin{cases} 2x_1 + 2x_2 = -1 \\ -2x_1 - 2x_2 = 1 \end{cases} \Rightarrow 2x_1 + 2x_2 = -1 \Rightarrow x_2 = \frac{-1 - x_1}{2}

So, \(v = \begin{pmatrix} c \\ -\frac{1}{2} - c \end{pmatrix} = \begin{pmatrix} 0 \\ -1/2 \end{pmatrix} + \begin{pmatrix} c \\ c \end{pmatrix} \) is a generalized eigenvector.

For convenience, pick \(c = 0 \). We have: \(\begin{pmatrix} 0 \\ -1/2 \end{pmatrix} \xrightarrow{A-\lambda I} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \xrightarrow{A-\lambda I} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \).
Example: Suppose A is 11×11 with an eigenvalue λ of algebraic multiplicity 11, and geometric multiplicity 4. [So $\dim (N - \lambda I) = 4$].

The following is one possibility for the generalized eigenvectors:

These rows are called "invariant subspace":

\[
\begin{align*}
V_5 & \rightarrow A - \lambda I \rightarrow V_4 \rightarrow A - \lambda I \rightarrow V_3 \rightarrow A - \lambda I \rightarrow V_2 \rightarrow A - \lambda I \rightarrow V_1 \rightarrow A - \lambda I \rightarrow 0 \\
W_3 & \rightarrow W_2 \rightarrow W_1 \rightarrow 0 \\
x_2 & \rightarrow x_1 \rightarrow 0 \\
y_1 & \rightarrow 0
\end{align*}
\]

Remarks:

$N_1 := N_{A - \lambda I} = \text{Span} \{ V_5, W_1, x_1, y_1 \}$ \hspace{1cm} \text{dim } N_2 = 4

$N_2 := (A - \lambda I)^2 = \text{Span} \{ V_5, W_2, x_2, V_1, W_1, x_1, y_1 \}$ \hspace{1cm} \text{dim } N_2 = 7

$N_3 := (A - \lambda I)^3 = \text{Span} \{ V_5, W_3, \ldots, x, y \}$ \hspace{1cm} \text{dim } N_3 = 9

\vdots

Note that: $N_1 \subseteq N_2 \subseteq N_3 \subseteq N_4 \subseteq N_5 = N_6 = \ldots$

$\dim N_1 = 4 < 7 < 9 < 10 < 11 = 11 = \ldots$

It's a fundamental result that there will always be a full set of generalized eigenvectors that form a basis for C^n. This is the Spectral Theorem.
Theorem 6.7: (Spectral Theorem) Let A be an $n \times n$ matrix over \mathbb{C}.

Then \mathbb{C}^n has a basis of eigenvectors (genuine or generalized) of A.

To prove Theorem 6.7, we need some algebraic results first.

Lemma 6.8: Let $p, q \in \mathbb{C}[x]$ with no common roots. Then we can write $ap + bq = 1$ for some other $a, b \in \mathbb{C}[x]$.

Remark: This is by the division algorithm. If these are integers, then we can write, $m = q \cdot r + r$, $r < n$. [e.g., $49 = 9 \cdot 5 + 4$]

q is the quotient, r is the remainder.

Proof: Let $I = \{ap + bq : a, b \in \mathbb{C}[x]\}$, the ideal generated by p and q.

Pick $d \in I$ with minimal degree.

Claim 1: $d \mid p$ and $d \mid q$.

Suppose it did not; say $d \nmid p$.

By division algorithm, write $p = md + r$ with $\deg r < \deg d$.

Since $p, d \in I$, $r = p - md \in I$. But d had minimal degree.

Claim 2: $\deg d = 0$.

If not, it would have a root x, and since $d \mid p$ and $d \mid q$,

then $(x - d)$ divides p and q.

Thus, d is constant; we may assume 1 since we're over \mathbb{C}. □
Lemma 6.9: Let A be an $n \times n$ matrix over \mathbb{C}, $\mathfrak{p}, \mathfrak{q} \in \mathcal{C}[s]$ with no common roots. Let $N_{\mathfrak{p}}, N_{\mathfrak{q}}, N_{\mathfrak{pq}}$ be the nullspaces of $\mathfrak{p}(A), \mathfrak{q}(A),$ and $\mathfrak{p}(A)\mathfrak{q}(A)$, respectively. Then $N_{\mathfrak{pq}} = N_{\mathfrak{p}} \oplus N_{\mathfrak{q}}$.

Proof: Write $ap + bq = 1$ for $a, b \in \mathcal{C}[s]$.

Plug in A: $a(\mathfrak{p})(\mathfrak{p}(A)) + b(\mathfrak{q})(\mathfrak{q}(A)) = I$.

Multiply by $x \in N_{\mathfrak{pq}}$: $\underbrace{a(\mathfrak{p})(\mathfrak{p}(A))x + b(\mathfrak{q})(\mathfrak{q}(A))x} = x$.

In $N_{\mathfrak{p}}$ because $b(\mathfrak{q})(\mathfrak{q}(A))x = 0$.

In $N_{\mathfrak{q}}$ because $a(\mathfrak{p})(\mathfrak{p}(A))x = 0$.

[Here, we're using that $f(\mathfrak{p})g(\mathfrak{q}) = g(\mathfrak{q})f(\mathfrak{p}) \neq \pm f, g \in \mathcal{C}[s].$]

The expression (\star) is $x = x_{\mathfrak{p}} + x_{\mathfrak{q}}$.

$b(\mathfrak{q})(\mathfrak{q}(A))x + a(\mathfrak{p})(\mathfrak{p}(A))x$.

This shows $N_{\mathfrak{pq}} = N_{\mathfrak{p}} \oplus N_{\mathfrak{q}}$. To show \oplus, we need uniqueness.

Suppose $x = x_{\mathfrak{p}} + x_{\mathfrak{q}} = x_{\mathfrak{p}}' + x_{\mathfrak{q}}'$. Put $y := x_{\mathfrak{p}} - x_{\mathfrak{p}}' = x_{\mathfrak{q}} - x_{\mathfrak{q}}' \in N_{\mathfrak{p}} \cap N_{\mathfrak{q}}$.

Clearly, $y \in N_{\mathfrak{pq}}$, so $y = Iy = \left[a(\mathfrak{p})(\mathfrak{p}(A)) + b(\mathfrak{q})(\mathfrak{q}(A))\right]y = 0$.

$\Rightarrow y = 0$.

Thus, $N_{\mathfrak{pq}} = N_{\mathfrak{p}} \oplus N_{\mathfrak{q}}$. \square
Corollary 6.10: Let \(P_{1}, \ldots, P_{k} \in \mathbb{C}(x) \) be pairwise coprime (no common roots). Let \(N_{P_{1}} \ldots P_{k} \) be the nullspace of \(P_{1}(A) \ldots P_{k}(A) \).

Then \(N_{P_{1}} \ldots P_{k} = N_{P_{1}} \oplus \cdots \oplus N_{P_{k}} \).

Proof: Exercise. (Induct on \(k \)).

Proof of Spectral Theorem: Pick \(x \in \mathbb{C}^{n} \).

Write \(P_{A}(A)x = \prod_{j=1}^{R} (A - \lambda_{j}I)^{n_{j}}x = 0 \).

Remove all factors \(A - \lambda_{j}I \) that are invertible, so we're left with a polynomial \(m(A)x = \prod_{j=1}^{R} (A - \lambda_{j}I)^{n_{j}}x = 0 \), each \(\lambda_{j} \) is e-value.

\[
= \prod_{j=1}^{R} (A - \lambda_{j}I)^{n_{j}}x = 0 \quad \text{with } \quad P_{j}(A)
\]

Remarks:
- \(P_{j}(s) = (s - \lambda_{j})^{n_{j}} \) and \(\lambda_{i} \neq \lambda_{j} \)
- The \(x \) above is in \(N_{P_{1}} \ldots P_{k} = N_{P_{1}} \oplus \cdots \oplus N_{P_{k}} \).
- If \(x = x_{P_{1}} + \cdots + x_{P_{k}} \), with \(x_{P_{i}} \in N_{P_{i}} \), then each \(x_{P_{i}} \) is a generalized eigenvector: \((A - \lambda_{i}I)^{n_{j}}x = 0 \). \(\square \)
Let \(I = \text{Im} \) be the set of polynomials \(p(x) \in \mathbb{C}[x] \) s.t. \(p(A) = 0 \).

Note that \(I \) is closed under addition & multiplication (of not just scalars, but polynomials too.)

Lemma: \(I \) contains a unique monic polynomial \(m = m_A \) of minimal degree, and all other polynomials in \(I \) are scalar multiples of \(m_A \) (i.e., \(I = \langle m_A \rangle \) is a principal ideal of \(\mathbb{C}[x] \).)

Proof: Let \(m \in I \) have minimal degree.

Uniqueness: Clear. [If there were 2, subtract them.]

Existence: Suppose \(p \in I \) were not a multiple of \(m \).

By division algorithm, write \(p = qm + r \), \(\deg r < \deg m \).

Then \(r = p - qm \in I \). \(\square \)

Def: The **minimal polynomial** of a matrix \(A \), denoted \(m_A \), is the unique monic polynomial of minimal degree for which \(m_A(A) = 0 \).

Let \(N_m = N_{m_A}(\lambda) \) be the nullspace of \((A - \lambda I)^m \).
Note that N_m consists of generalized eigenvectors, and

$$N_1 \subset N_2 \subset \ldots \subset N_d = N_{d+1} = \ldots$$

for some index d. Let $d = d(\lambda)$ be the minimal index such that

$$N_{d-1} \subset N_d = N_{d+1},$$

called the index of the eigenvalue λ.

Theorem 6.11: If A is $n \times n$ and has distinct eigenvalues $\lambda_1, \ldots, \lambda_d$ with indices d_1, \ldots, d_k, then its minimal polynomial is

$$m_A(t) = \prod_{i=1}^{d} (t - \lambda_i)^{d_i}.$$

Proof: Exercise.

Denote $N_j(\lambda_j)$ by $N^{(j)}$. The spectral theorem can be stated as follows:

$$\mathbb{C}^n = N^{(1)} \oplus N^{(2)} \oplus \ldots \oplus N^{(k)}.$$

Remark: $\dim N^{(j)}$ is the algebraic multiplicity of λ_j (this will be proved later).

Note that A maps $N^{(j)}$ into itself. We call such a subspace invariant under A.

It turns out that A (up to choice of basis) is completely determined by the dimensions of $N_1(\lambda), \ldots, N_d(\lambda)$ for each λ.
Theorem 6.12: Two matrices A, B are similar if and only if they have the same eigenvalues, and the dimensions of the corresponding eigenspaces are the same. That is, if for each eigenvalue λ_j, $\dim N_m(\lambda_j) = \dim M_m(\lambda_j)$, where $N_m(\lambda_j) = \text{nullspace of } (A - \lambda_j I)^m$, $M_m(\lambda_j) = \text{nullspace of } (B - \lambda_j I)^m$.

Proof: \Rightarrow If $A = S^{-1}BS$, then $(A - \lambda I)^m = S^{-1}(B - \lambda I)^m S$.

Therefore, $(A - \lambda I)^m$ and $(B - \lambda I)^m$ have the same nullity.

\Leftarrow Let $\lambda = \lambda_j$ be an eigenvalue of A, and $N_i := \text{nullspace of } (A - \lambda I)^i$.

Goal: Construct a basis for N_d under which $A - \lambda I$ admits a nice matrix form (the "Jordan Canonical Form").

Recall: $N_{d+1} \supseteq N_d \supseteq N_{d-1} \supseteq \cdots \supseteq N_2 \supseteq N_1 \supseteq N_0 = 0$.

Lemma: The map $A - \lambda I$ carries over to a well-defined map on the quotient spaces: $A - \lambda I : \frac{N_{i+1}}{N_i} \longrightarrow \frac{N_i}{N_{i-1}}$.

Moreover, it is injective.

Proof: Exercise (HW).
By lemma 6.13, \(\dim(N_{i+1}/N_i) \leq \dim(N_i/N_{i-1}) \).

We will construct our basis for \(Nd \) in "batches."

Let \(\overline{x}_{1}, \ldots, \overline{x}_{k} \) be a basis for \(N_d/N_{d-1} \) (so \(x_1, \ldots, x_k \) lin. indep. in \(N_d \)).

By lemma, \((A-\lambda I)\overline{x}_1, \ldots, (A-\lambda I)\overline{x}_k \) are linearly independent in \(N_{d-1}/N_{d-2} \).

Extend to a basis \(\overline{x}_1', \ldots, \overline{x}_k', \overline{x}_{k+1}', \ldots, \overline{x}_l' \) of \(N_{d-1}/N_{d-2} \).

Repeat this process:

\((A-\lambda I)\overline{x}_1', \ldots, (A-\lambda I)\overline{x}_k' \) are linearly independent in \(N_{d-1}/N_{d-2} \).

Picture of this:

\[
\begin{align*}
X_1 & \xrightarrow{A-\lambda I} X_1' \\
\vdots & \qquad \vdots \\
X_{k} & \xrightarrow{A-\lambda I} X_k' \\
X_{k+1} & \xrightarrow{A-\lambda I} X_{k+1}' \\
& \quad \vdots \\
X_l & \xrightarrow{A-\lambda I} X_l'
\end{align*}
\]

\[
\begin{align*}
A-\lambda I & \quad X_1^{(d)} \quad A-\lambda I \quad 0 \\
\vdots & \quad \vdots \\
A-\lambda I & \quad X_{k+1}^{(d)} \quad 0 \\
A-\lambda I & \quad X_{k+1}^{(d)} \quad 0 \\
\vdots & \quad \vdots \\
A-\lambda I & \quad X_{l}^{(d)} \quad 0 \\
\vdots & \quad \vdots \\
A-\lambda I & \quad X_{l}^{(d)} \quad 0 \\
\vdots & \quad \vdots \\
A-\lambda I & \quad X_{l}^{(d)} \quad 0
\end{align*}
\]
Remarks:

- $N_d(\lambda) =$ space spanned by all of the vectors
 = set of generalized eigenvectors for λ.
- Algebraic multiplicity of $\lambda = \dim N_d(\lambda) =$ total # vectors spanned.
- Geometric multiplicity of $\lambda = \dim N_1(\lambda) =$ # of rows
 = # of linearly independent eigenvectors for λ.
- Index of $\lambda =$ length of longest row.
- Each "row" of vectors spans an invariant subspace of $A - \lambda I$.

- The matrix $A - \lambda I$ restricted to this
 subspace has the form:

$$
\begin{bmatrix}
0 & \cdots & 0 \\
0 & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}
$$

- The matrix A restricted to this
 subspace has the form, called a Jordan block.

Reason: If $X_d \xrightarrow{A - \lambda I} X_{d-1} \xrightarrow{A - \lambda I} \cdots X_2 \xrightarrow{A - \lambda I} X_1 \xrightarrow{A - \lambda I} 0$
then write basis X_1, \ldots, X_d,

$$(A - \lambda I) X_j = X_{j-1} \Rightarrow A X_j = \lambda X_j + X_{j-1} \Rightarrow \text{row } j \text{ is}
\begin{bmatrix}
\lambda \\
1
\end{bmatrix}$$

If we use a basis of generalized eigenvectors for C^\perp, then
the matrix for A is block-diagonal, consisting of Jordan blocks.
Such a matrix is called the Jordan canonical form of A. $J = \begin{bmatrix} J_1 & & \\ & J_2 & \\ & & \ddots \\ & & & J_k \end{bmatrix}$.

Since it depends only on the eigenvalues and eigenspace dimensions, if two matrices A and B have the same eigenvalues and $\dim N_m(\lambda_j) = \dim M_m(\lambda_j)$ as in Theorem 6.12, then they must be similar to the same "Jordan matrix."

The following is a generalization of the spectral mapping theorem:

Theorem 6.14: Let $A, B : X \rightarrow X$ be commuting maps, $\dim X < \infty$.

Then there is a basis for X consisting of eigenvectors and generalized eigenvectors of A and B.

Proof: Write $X = N^{(1)} \oplus \cdots \oplus N^{(k)}$, where each summand is a generalized eigenspace $N^{(i)} = N_{d_j}(\lambda_j) = \text{null space } (A - \lambda_j I)^{d_j}$.

Claim: B maps $N^{(i)}$ into $N^{(i)}$.

To show this, let $d = d_j$ and $\lambda = \lambda_j$. For a gen. eigenvector x,

$$0 = (A - \lambda I)^d x = B(A - \lambda I)^d x = (A - \lambda I)^d B x \Rightarrow B x \in N^{(i)}.$$

Now apply the spectral theorem to B, restricted to each $N^{(i)}$ separately.
Conclusion: \(B \mid_{N(i)} : N(i) \to N(i) \) and by the spectral theorem, \(N(i) \) has a basis of generalized eigenvectors of \(B \). But there are also generalized eigenvectors of \(A \) for \(\lambda \).

\[\square \]

Corollary 6.15: Theorem 6.14 remains true for any number (even infinite) of pairwise commuting maps.

Proof: Exercise.

Theorem 6.16: Every square matrix \(A \) is similar to its transpose.

Proof: Let \(A : X \to X \) be linear and \(A' : X' \to X' \) its transpose.

Note that \((A-\lambda I)' = A' - \lambda I' \).

Thus, \(A \) and \(A' \) have the same eigenvalues, and the eigenspaces have the same dimension.

The transpose of \((A-\lambda I)^j \) is \((A'-\lambda I)^j \), thus their nullspaces have the same dimension.

Theorem 6.12 now implies that \(A \) and \(A' \) are similar.

\[\square \]

Theorem 6.17: Let \(X \) be a finite-dimensional space over \(\mathbb{C} \), and \(A : X \to X \) linear. Let \(\lambda \neq \lambda' \) be eigenvalues of \(A \) (and thus also of \(A' \)). If \(Av = \lambda v \) and \(A' \ell = \lambda' \ell \), then \((\ell, x) = 0\).
Proof: By assumption, $A v = \lambda v$ and $A' e_i = \lambda_i e_i$

$\Rightarrow \lambda (e_i, v) = (e_i, \lambda v) = (e_i, A v) = (e_i, A' e_i, v) = \lambda_i (e_i, v)$

Since $\lambda \neq \lambda_i$, $(e_i, v) = 0$.

Application of Theorem 6.17:

Theorem 6.18: Suppose A has distinct eigenvalues $\lambda_1, ..., \lambda_n$ and corresponding eigenvectors $v_1, ..., v_n \in \mathbb{C}^n$ and let $e_1, ..., e_n$ be the corresponding eigenvectors in A'.

Then: (a) $(e_i, v_i) \neq 0$ for each i

(b) If $x = \sum_{i=1}^{n} a_i v_i$, then $a_i = \frac{(e_i, x)}{(e_i, v_i)}$.

Def: When A has linearly independent eigenvectors $v_1, ..., v_n$, we say that A is diagonalizable, because its Jordan canonical form is a diagonal matrix D. In this case, we can write $A = P^{-1}DP$, or equivalently, $D = PAP^{-1}$.

The matrix D has the eigenvalues down the diagonal, and the columns of P are the corresponding eigenvectors, i.e., $D = (\lambda_1 e_1, ..., \lambda_n e_n)$, $P = (v_1, ..., v_n)$.
To see this, note that

\[A \rho = A(u_1, \ldots, u_n) = (Av_1, \ldots, Av_n) = (\lambda_1 v_1, \ldots, \lambda_n v_n) = (\lambda_1 p e_1, \ldots, \lambda_n p e_n) = \rho (\lambda_1 e_1, \ldots, \lambda_n e_n) = \rho D. \]

Diagram:

\[\begin{align*}
\mathbb{R}^n & \xrightarrow{A} \mathbb{R}^n \\
\rho & \uparrow \\
\mathbb{R}^n & \xrightarrow{D} \mathbb{R}^n
\end{align*} \]

Example:

\[
\begin{bmatrix}
3 & -2 \\
1 & 0
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
0 & 2
\end{bmatrix} \begin{bmatrix}
1 & 2 \\
1 & 1
\end{bmatrix}^{-1} \implies \lambda_1 = 1, \quad v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix},
\]
\[
\lambda_2 = 2, \quad v_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
\]
Application to differential equations

1. Consider a system of n linear ODEs: \(\dot{\mathbf{x}} = A \mathbf{x} \).

 Suppose \(A \) has eigenvalues \(\lambda_1, \ldots, \lambda_n \) and \(n \) linearly independent eigenvectors \(\mathbf{v}_1, \ldots, \mathbf{v}_n \).

 Note: \(\mathbf{x}_i(t) = e^{\lambda_i t} \mathbf{v}_i \) is a solution (easy to check this).

 Solutions to \(\dot{\mathbf{x}} = A \mathbf{x} \) are vectors in the nullspace of \(\frac{d}{dt} - A \).

 It's well-known that the nullspace is \(n \)-dimensional.

 Thus, the general solution is \(\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v}_1 + \cdots + C_n e^{\lambda_n t} \mathbf{v}_n \).

 In matrix form, this is
 \[
 \begin{bmatrix}
 e^{\lambda_1 t} & 0 & \cdots & 0 \\
 0 & e^{\lambda_2 t} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & e^{\lambda_n t}
 \end{bmatrix}
 \begin{bmatrix}
 C_1 \\
 C_2 \\
 \vdots \\
 C_n
 \end{bmatrix}
 = e^{Dt} \mathbf{x}_0
 \]

 Here, \(\mathbf{x}_0 = \begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{bmatrix} \) and we're using basis \(\mathbf{v}_1, \ldots, \mathbf{v}_n \).

 With respect to the basis \(e_1, \ldots, e_n \), \(e^{Dt} \mathbf{x}_0 \) becomes
 \[
 e^{At} \mathbf{x}_0 = e^{P^{-1} D P t} P e_0 = (P e^{D t} P) \mathbf{x}_0,
 \]

 While it may seem that \(e^{At} = \sum_{i=0}^{\infty} \frac{A^i t^i}{i!} \) is hard to compute,

 \(e^{Dt} \) and \(P^{-1} e^{Dt} P \) are easy to compute.
In summary, if A has n linearly independent eigenvectors, then the general solution to $\dot{x} = Ax$, $x(0) = x_0$ is

$$\dot{x}(t) = e^{At}x_0 = p^T e^{Dt} p x_0,$$

(2) Consider

$$\begin{cases}
\dot{x}_1 &= -x_1 - x_2 \\
\dot{x}_2 &= x_1 - 3x_2
\end{cases}$$

i.e., $\dot{x} = Ax$, $A = \begin{pmatrix} -1 & -1 \\ 1 & -3 \end{pmatrix}$.

It's easy to check that $\lambda_1 = \lambda_2 = -2$ is an eigenvalue of A with eigenvector $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Thus, $\dot{x}_1(t) = e^{-2t}v_1$ is a solution to $\dot{x} = Ax$.

We need another. Try $\dot{x}_2 = e^{-2t}(t\dot{v} + \ddot{w})$, solve for \dot{v}, \ddot{w}.

Plug back in:

$$\begin{align*}
\dot{x}_2 &= -2e^{-2t}(t\dot{v} + \ddot{w}) + e^{-2t} \dot{v} = e^{-2t}(tA\dot{v} + A\ddot{w})
\end{align*}$$

Equate coeffs:

$$\begin{cases}
e^{-2t} : -2\dot{v} = A\dot{v} & \Rightarrow (A + 2I)\dot{v} = 0 \\
e^{-2t} : -2\ddot{w} = A\ddot{w} & \Rightarrow (A + 2I)\ddot{w} = 0
\end{cases}$$

So, $\dot{v} = \ddot{v}_1$ and $\ddot{w} = \ddot{v}_2$, a generalized eigenvector ($\ddot{v}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ works).

Thus, the general solution is $\dot{x}(t) = Ce^{-2t}\dot{v}_1 + C_2 e^{t} (t\dot{v}_1 + \ddot{v}_2)$.

Or $\dot{x}(t) = e^{Jt}x_0$, where $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (Jordan canonical form; here $\lambda = 2$).