8. Self-adjoint mappings:

Throughout, let \(X \) be a finite-dimensional Euclidean space.

Def: Recall that a linear map \(M : X \to X \) is **self-adjoint** (or **Hermitian**) if \(M^* = M \). It is **anti-self-adjoint** (or **anti-Hermitian**) if \(M^* = -M \).

Remark: Every linear map \(M : X \to X \) can be decomposed into a self-adjoint part and an anti-self-adjoint part, by

\[
M = H + A, \quad H = \frac{M + M^*}{2}, \quad A = \frac{M - M^*}{2}.
\]

Indeed,

\[
\text{Re}(x, Mx) = \frac{1}{2} \left[(x, Mx) + (x, M^*x) \right] = \frac{1}{2} \left[(x, M^*x) + (x, Mx) \right] = \frac{1}{2} \left[(x, Mx) + (x, M^*x) \right] = (x, Hx)
\]

\[
\text{Im}(x, Mx) = \frac{1}{2} \left[(x, Mx) - (x, M^*x) \right] = \frac{1}{2} \left[(x, M^*x) - (x, Mx) \right] = \frac{1}{2} \left[(x, M^*x) - (x, M^*x) \right] = (x, Ax).
\]

Quadratic forms

Motivation: Let \(f(x_1, \ldots, x_n) \) be a real-valued function, \(\mathbb{R}^n \to \mathbb{R} \).

Recall the **Taylor approximation** of \(f \) at \(a \in \mathbb{R}^n \) up to 2nd order says that, for \(y \in \mathbb{R}^n \) with \(\|y\| \approx 0 \),

\[
f(a+y) \approx f(a) + l(y) + \frac{1}{2} q(y),
\]

where
* $f(a)$ is the 0th order term

* $l(y)$ is the 1st order term: $l(y) = (y, g)$ for some $g \in \mathbb{R}^n$.

It turns out that $g = \nabla f = \left(\frac{df}{dx_1}, \ldots, \frac{df}{dx_n} \right)$, the gradient of f.

* $g(y)$ is the 2nd order term: $g(y) = \sum_{j=1}^{n} \sum_{i=1}^{n} h_{ij} y_i y_j$, where $H = (h_{ij}) = \left(\frac{d^2f}{dx_i dx_j} \right)$ is the Hessian of f.

Note that H is self-adjoint, because $\frac{d^2f}{dx_i dx_j} = \frac{d^2f}{dx_j dx_i}$.

and that $g(y) = [y_1, \ldots, y_n] H [y_1, \ldots, y_n]^T = (y, Hy)$.

Suppose $a \in \mathbb{R}^n$ is a critical point of f, i.e., $\nabla f = g = 0$.

Then the behavior of f is governed by the 2nd order term $g(y)$.

Def: A function $g : X \to \mathbb{K}$ of the form $g(x) = (x, Hx)$ for a self-adjoint map H is called a quadratic form.

Observe that $g(x) = [x_1, \ldots, x_n] \begin{bmatrix} h_{11} & \cdots & h_{1n} \\ \vdots & \ddots & \vdots \\ h_{n1} & \cdots & h_{nn} \end{bmatrix} [x_1, \ldots, x_n] = \sum_{j=1}^{n} \sum_{i=1}^{n} h_{ij} x_i x_j$.

Suppose now that we can diagonalize H, that is, write $H = P^{-1}DP$. Recall that this would mean that $D = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$ and $P = \begin{bmatrix} V_1 & \cdots & V_n \end{bmatrix}$, the matrix of eigenvectors of H.
Then, we would have
\[q(x) = (x, Hx) = x^T H x = x^T P^{-1} D P x. \]
Moreover, if \(P \) is real-valued and orthogonal, then \(P^T P = I \), i.e., \(P^{-1} = P^T \).
Then we could put \(z = Px \) and write
\[q(z) = z^T D z = [z_1, \ldots, z_n] \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} = \sum_{i=1}^{n} \lambda_i z_i^2. \]
This is much easier! Note that we can do this iff \(P^T P = I \), i.e., iff \(X \) has an orthonormal basis of real eigenvectors of \(H \).
It turns out that this is always the case.

Theorem 8.1: A self-adjoint mapping \(H : X \to X \) of a complex Euclidean space has only real eigenvalues, and a set of eigenvectors that forms an orthonormal basis of \(X \).

Proof: It suffices to show that
(i) \(H \) has only real eigenvalues
(ii) \(H \) has no generalized eigenvectors (only genuine ones)
(iii) Eigenvectors corresponding to different eigenvalues are orthogonal.

Proof: (i) Let \(\lambda \) be an eigenvalue of \(H \) with eigenvector \(v \neq 0 \).
Then \((Hv, v) = (\lambda v, v) = \lambda (v, v) \)
and \((v, Hv) = (v, \lambda v) = \overline{\lambda} (v, v) \)
Since \((v, v) \neq 0\), \(\lambda = \bar{\lambda} \Rightarrow \lambda \) is real. \(\checkmark\)

(ii) Suppose \((H - \lambda I)^d v = 0\). We must show \((H - \lambda I)^{d-1} v = 0\).

Induct on \(d\). Base case \((d = 2)\):

If \((H - \lambda I)^2 v = 0\), then \(\langle (H - \lambda I)^2 v, v \rangle = 0\)

\[\Rightarrow \quad \langle (H - \lambda I)v, (H - \lambda I)v \rangle = \| (H - \lambda I)v \|^2 = 0 \Rightarrow (H - \lambda I)v = 0. \checkmark \]

Now, suppose \((H - \lambda I)^d v = 0 \Rightarrow (H - \lambda I)^2 (H - \lambda I)^{d-2} v = 0\)

We have \((H - \lambda I)^2 w = 0 \Rightarrow (H - \lambda I)w = 0\)

\[\Rightarrow \quad (H - \lambda I)^{d-1} w = 0 \]

\[\Rightarrow \quad (H - \lambda I)v = 0 \quad \text{(induction hypothesis)} \checkmark \]

(iii) Suppose \(Hv = \lambda v\), \(Hw = \mu w\).

Then \(\langle \lambda v, w \rangle = \langle v, \mu w \rangle = \langle Hv, w \rangle = \langle v, Hw \rangle = \langle v, \mu w \rangle = \mu \langle v, w \rangle\)

So if \(\lambda \neq \mu\), then \(\langle v, w \rangle = 0\). \(\checkmark\)

\[\square \]

Corollary 8.2: If \(H\) is self-adjoint, then \(H = M^* D M\) for a diagonal matrix \(D\) and an orthogonal matrix \(M\) (that is, \(M^* M = I\)).

By Theorem 8.1, we can write \(X = N^{(1)} \oplus \cdots \oplus N^{(k)}\), where \(N^{(i)}\) consists of eigenvectors with eigenvalue \(\lambda_i\), and \(\lambda_i \neq \lambda_j\) \((i \neq j)\).

Thus, we can write \(x \in X\) as \(x = x^{(1)} + \cdots + x^{(k)}\), \(x^{(i)} \in N^{(i)}\).

Note that \(Hx = \lambda_1 x^{(1)} + \cdots + \lambda_k x^{(k)}\).
Let $P_i(x)$ be the projection of x onto the eigenspace N_i, that is

$$P_i : X \to X, \quad P_i : x \mapsto x_i.$$

Remark:
(a) $P_i P_j = 0$ if $i \neq j$ and $P_i^2 = P_i$

(b) $P_i^x = P_i$ (property of orthogonal projections).

Def: The decomposition $I = \sum_{i=1}^k P_i$ is called a *resolution of the identity*, and $H = \sum_{i=1}^k \lambda_i P_i$ is called the *spectral resolution* of H.

Corollary 8.2 can now be stated as follows:

Theorem 8.3: Let X be a complex Euclidean space, $H : X \to X$ a self-adjoint linear map. Then there is a resolution of the identity and a spectral resolution of H.

It is now easy to define functions on H. For example,

$$H^2 = \sum_{i=1}^k \lambda_i^2 P_i, \quad H^n = \sum_{i=1}^k \lambda_i^n P_i,$$

and for any polynomial $p(t)$, we have $p(H) = \sum_{i=1}^k p(\lambda_i) P_i$.

Motivated by this, if f is any real-valued function defined on the spectrum (set of eigenvalues) of H, then we define

$$f(H) = \sum_{i=1}^k f(\lambda_i) P_i.$$
Example: \(\sum_{k=1} e_i^k \sum_{k=1} e_i^k P_i \).

Theorem 8.1: Suppose \(H \) and \(K \) are self-adjoint commuting maps. Then they have a common spectral resolution, that is, there are orthogonal projections (as above) so that \(I = \sum_{i=1} P_i \) and \(H = \sum_{i=1} \lambda_i P_i \) and \(K = \sum_{i=1} \mu_i P_i \).

Proof: Write \(X = N(1) \oplus \ldots \oplus N(k) \), a product of eigenspaces of \(H \) corresponding to distinct eigenvectors.

Pick \(N = N(1) \). Then for every \(x \in N \), \(Hx = \lambda x \)

\[H(Kx) = K(Hx) = K(\lambda x) = \lambda (Kx) \]

Thus, \(Kx \) is an eigenvector of \(H \), so \(K \) maps \(N \to N \).

Find a spectral resolution of \(K \) over \(N \), i.e., write

\[K|_N = \sum_{i=1}^{k_j} \mu_{ji} P_{ji} \quad \text{and} \quad I|_N = \sum_{i=1}^{k_j} P_{ji}. \]

Assume \(\mu_i \)'s distinct.

Note that \(H|_N = \sum_{i=1}^{k_j} \lambda_{ji} P_{ji} \) (and \(\lambda_{ji} = \lambda_j \) for each \(i \)).

Now, \(N(i) = N(i1) \oplus N(i2) \oplus \ldots \oplus N(i(k_i)) \), orthogonal eigenspace of \(K|_N \) (and of \(H|_N \)?)
Expanding each $N^{(i)}$ into eigenspace of K/W gives a common spectral resolution of H and K, which we seek.

That is,

$$X = N^{(1)} \oplus N^{(2)} \oplus \ldots \oplus N^{(k)}$$

$$= (N^{(1)}) \oplus \ldots \oplus N^{(k_1)} \oplus (N^{(2)}) \oplus \ldots \oplus N^{(k_2)} \oplus \ldots \oplus (N^{(k)}) \oplus \ldots \oplus N^{(k_{k_2})}$$

Note that not all of the corresponding eigenvalues will be distinct (and that's fine).

Remarks:

• This is easily generalized for any number of commuting maps.

• $(iM)^* = -iM^*$ (where $i = \sqrt{-1}$)

Thus, if M is self-adjoint, then iM is anti-self-adjoint, and vice versa. We can now conclude the following:

Corollary 8.5: Let A be an anti-self-adjoint mapping of a complex Euclidean space. Then

(a) The eigenvalues of A are purely imaginary.

(b) X has an orthonormal basis of eigenvectors of A.

Def: A mapping \(N : X \to \mathbb{X} \) of a complex Euclidean space is normal if \(NN^* = N^*N \).

Remark: Self-adjoint \((H^* = H)\), anti-self-adjoint \((A^* = -A)\), and unitary \((U^* = U^{-1})\) maps are all clearly normal.

Picture of this: Let \(A : X \to U \) be linear.

\[
\begin{align*}
&X \\
&\quad R_{A^*} \\
&\quad \dim n-r \\
&\quad N_A \\
&\quad \dim n-r \\
\end{align*}
\]

\[
\begin{align*}
&U \\
&\quad R_A \\
&\quad \dim r \\
&\quad N_{A^*} \\
&\quad \dim m-r \\
\end{align*}
\]

Facts (proofs are HW):

- \(A \) restricted to \(R_{A^*} \) is a bijection \(R_{A^*} \to R_A \)
- \(R_A^\perp = N_A \) and \(R_{A^*}^\perp = N_{A^*} \)

\[
\text{and so } X = R_{A^*} \oplus N_A \text{ and } U = R_A \oplus N_{A^*}.
\]

Think of \(R_A \) as the "column space" and \(R_{A^*} \) as the "row space" (if \(A \) has real entries).
Theorem 8.6: If \(N : X \to X \) is normal, then \(X \) has an orthonormal basis of eigenvectors of \(N \).

Proof: Write \(N = H + A \), where \(H = \frac{N + N^*}{2} \), \(A = \frac{N - N^*}{2} \).

If \(N \) and \(N^* \) commute, then \(H \) and \(iA \) commute, and there are self-adjoint anyways.

By Theorem 8.4, they have a common spectral resolution, thus \(X \) has an orthonormal basis of common eigenvectors. However, since \(N = H + A \), these are eigenvectors of \(N \) (and \(N^* \)) as well. \(\square \)

Theorem 8.7: Let \(U : X \to X \) be unitary. Then

(a) \(X \) has an orthonormal basis of eigenvectors of \(U \).

(b) Each eigenvalue has norm 1.

Proof: (a) Immediate from Theorem 8.6.

(b) If \(UV = \lambda U \), then \(\|UV\| = \|V\| \) since \(U \) is unitary.

\[\Rightarrow \|UV\| = \|\lambda U\| = |\lambda| \|U\| = \|V\| \Rightarrow |\lambda| = 1. \square \]
Recall that we derived the spectral resolution of self-adjoint maps using the spectral theory of general maps. Here, we'll give an alternate proof that has several advantages:

- It doesn't assume the fundamental theorem of algebra.
- For real symmetric matrices, it avoids complex numbers.
- It leads to the "minmax principle" which gives a new characterization of the eigenvalues of H. (And other applications.)

First, suppose X has an orthonormal basis of eigenvectors of a mapping $M: X \to X$ and write $x = (a_1, \ldots, a_n)$ in this basis.

Define:
- $q(x) = (x, Mx) = \left(\sum_{i=1}^{\hat{n}} a_i v_i, \sum_{i=1}^{\hat{n}} a_i M v_i \right)$

 $\quad = \left(\sum_{i=1}^{\hat{n}} a_i v_i, \sum_{i=1}^{\hat{n}} a_i \lambda_i v_i \right) = \sum_{i=1}^{\hat{n}} \lambda_i a_i^2$.

- $p(x) = (x, x) = \sum_{i=1}^{\hat{n}} a_i^2$.

Define: let $H: X \to X$ be self-adjoint and define the Rayleigh quotient of H by $R(x) = R_H(x) = \frac{(x, Hx)}{(x, x)}$.
Goal: Show that the minimum & maximum values of $R(t)$
(and actually, all critical points!) occur at the eigenvectors of H
Deduce that H has a full set of orthonormal eigenvectors.

Remark: Since $R(kx) = R(x)$, we only need to consider unit vectors.

Suppose that $R(v) = \min \{ R(x) : \|x\| = 1 \} = \lambda$. [and $\|v\| = 1$]
Let $w \neq x$ be any other vector, and $t \in \mathbb{R}$ a parameter.

\[
R(v+tw) = \frac{(v+tw, H(v+tw))}{(v+tw, v+tw)} = \left(\frac{(v, Hv) + t(v, Hw) + t^2(w, w)}{(v, v) + t(v, w) + t^2(w, w)} \right)
\]

\[
= \frac{(v, Hv) + 2t \text{Re}(Hv, w) + t^2(w, w)}{(v, v) + 2t \text{Re}(v, w) + t^2(w, w)} = \frac{\Phi(t)}{\rho(t)}.
\]

Since R is minimized at $t = 0$, we know that

\[
\dot{R}(0) = \left. \frac{d}{dt} \frac{\Phi(t)}{\rho(t)} \right|_{t=0} = \frac{\rho(0) \dot{\Phi}(0) - \Phi(0) \dot{\rho}(0)}{(\rho(0))^2} = 0
\]
At \(t=0 \):

\[p(0) = (\nu, \nu) = 1 \quad \quad q(0) = R(\nu) = \lambda \]

\[\dot{p}(0) = 2 \text{ Re} (\nu, w) \quad \quad \dot{q}(0) = 2 \text{ Re} (H\nu, w). \]

\[
\Rightarrow \quad p(0) \dot{q}(0) - \dot{p}(0) q(0) = 1 \cdot 2 \text{ Re} (H\nu, w) - \lambda \cdot 2 \text{ Re} (\nu, w) \\
= 2 \text{ Re} (H\nu - \lambda \nu, w) = 0 \quad \forall \nu \in X
\]

Since this holds for all \(\nu \in X \), \(H\nu - \lambda \nu = 0 \Rightarrow H\nu = \lambda \nu. \)

Now, let \(X_1 = \text{Span}(\nu)^\perp \), so \(X = X_1 \oplus \text{Span}(\nu) \) and \(\dim X_1 = n-1 \).

Claim: \(X_1 \) is "\(H \)-invariant"; that is, \(H \) maps \(X_1 \) onto \(X_1 \).

Proof: \((x, v) = 0 \Rightarrow (Hx, v) = (x, Hv) = (x, \lambda v) = \lambda (x, v) = 0 \).

That is, if \(x \in X_1 \), then \(Hx \in X_1 \).

Now, put \(v_1 = \nu \) and \(\lambda_1 = \lambda \).

Let \(v_2 \in X \), be the (non-zero) vector for which

\[R(v_2) = \min \left\{ R(x) : x \in X_1, \|x\| = 1 \right\} =: \lambda_2 \]

Then \(v_2 \) is an eigenvector of \(H \) with eigenvalue \(\lambda_2 \geq \lambda \).

Next, put \(X_2 := \text{Span} (v_1, v_2)^\perp \) and continue in this fashion.
We get a full set of orthonormal eigenvectors of H with eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$.

Theorem 8.8: (Min-max principle). Let $H: X \to X$ be self-adjoint with eigenvalues $\lambda_1 \leq \ldots \leq \lambda_n$. Then $\lambda_k = \min_{\dim S = k} \{ \max_{x \in S, \|x\| = 1} R_H(x) \}$.

Proof: Let S be any k-dimensional subspace.

First, we'll show that $R_H(x) \geq \lambda_k$ for some $x \in S$.

Let v_1, \ldots, v_n be the eigenvectors, assume $\|v_i\| = 1$

Let $T = \text{Span}\{v_k, \ldots, v_n\}$ so $\dim T = n - (k - 1) = n - k + 1$

Thus, $\dim S + \dim T - \dim S \cap T = \dim S + T \leq n$

$\implies k + (n - k + 1) - d \leq n$

$\implies d \geq 1$.

Thus there is some $x \in S \cap T$, $\|x\| = 1$.

Write $x = \sum_{i=1}^{n} a_i v_i \implies R(x) = (x, Hx) =\sum_{i=1}^{n} a_i^2 \lambda_i$.

$\implies R(x) = \langle x, Hx \rangle = \sum_{i=k}^{n} \lambda_i a_i^2 \geq \lambda_k \sum_{i=k}^{n} a_i^2 = \lambda_k$.
Next, show that some k-dimensional subspace achieves this minimum, i.e., find $S \subseteq X$ for which $R(x) \leq \lambda_k$ for all $x \in S$.

Take $S = \text{Span}\{v_1, \ldots, v_k\}$.

For any unit vector $x = \sum_{i=1}^{k} b_i v_i \in S$,

$$R(x) = (x, Hx) = \sum_{i=1}^{k} \lambda_i b_i^2 \leq \lambda_k \sum_{i=1}^{k} b_i^2 = \lambda_k. \quad \square$$

Summary of the Rayleigh quotient:

(i) Every eigenvector v_i of H is a critical point of $\hat{R}_H(x)$, i.e., the 1^{st} derivatives of $\hat{R}_H(x)$ are zero iif x is an eigenvector.

(ii) For any eigenvector v_i with eigenvalue λ_i, $\hat{R}_H(v_i) = \lambda_i$.

(iii) In particular, $\lambda_1 = \min \{R(x) : x \neq 0\}$

$$\lambda_1 = \max \{R(x) : x \neq 0\}.$$

Application: Let H be real-symmetric, and let v be an eigenvector with eigenvalue λ. If $\|v-w\| \leq \varepsilon$, then $\|v - \hat{R}_H(w)\| = O(\varepsilon^2)$, i.e., $\hat{R}_H(w)$ is a 2nd order Taylor approximation of the eigenvalue. This arises in numerical methods for computing eigenvalues.
Def. A self-adjoint map $M: X \to X$ is **positive** (or **positive definite** if $(x, Mx) > 0$ for all $x \neq 0$.

Remark. From our analysis of the Rayleigh quotient, M is positive iff all eigenvalues of M are positive.

Generalized Rayleigh quotient: If $H, M: X \to X$ are self-adjoint and M positive, then define $R_{H, M}(x) = \frac{(x, Hx)}{(x, Mx)}$.

Note that $R_H = R_{H, I}$.

We can derive a similar minmax principle:

Theorem 8.9: The minimum problem $\min \{ R_{H, M}(x) \}$ has a solution $R_{H, M}(w) = \mu > 0$ where $w \neq 0$ and μ solves $Hv = \mu Mv$.

The (constrained) minimum problem $\min \{ R_{H, M}(x) : (x, Mw) = 0 \}$ has a solution $R_{H, M}(w) = \nu$ where $w \neq 0$ and ν satisfies $Hw = \nu Mw$.

Proof. Exercise. (Hw)

As before, we can iterate this process and produce a special basis for X.

Theorem 8.10: Let \(H, M : X \to X \) be self-adjoint and \(M \) positive. Then there is a basis \(v_1, \ldots, v_n \) of \(X \) where each \(v_i \) satisfies \(Hv_i = \mu_i Mv_i \) for some \(\mu_i \in \mathbb{R} \), and \((v_i, Mv_j) = 0 \) for \(i \neq j \).

Corollary 8.11: All eigenvalues of \(M^{-1}H \) are real. Moreover, if \(H \) is also positive, then the eigenvalues of \(M^{-1}H \) are all positive.

Proof: Exercise (HW).

Theorem 8.12: Let \(N : X \to X \) be a normal linear map.

Then \(\|N\| = \max |\lambda_i| \), taken over all eigenvalues of \(N \).

Proof: Exercise (HW).

Recall that for any linear map \(A : X \to U \), the matrix \(A^*A : X \to X \) is self-adjoint and non-negative (that is, \((x, Mv) \geq 0 \) \(\forall x \in X \)). It is positive if \(N_A = \{0\} \), (because \(\text{rank } A = \text{rank } A^*A \)).
Thus, in some sense, the matrix A^*A is the 'proper' way to think of the "square" of a matrix.

[Note: In contrast, A^2 could have negative eigenvalues.]

The next result even further supports this claim.

Theorem 8.13: Let $A : X \rightarrow X$ be linear and say that the eigenvalues of A^*A are $\lambda_1 \leq \cdots \leq \lambda_n$. Then $\|A\| = \sqrt{\lambda_n}$.

Proof: We need to show $\max \{\|Ax\|^2 : \|x\| = 1\} = \lambda_k$.

First take any $x \in X$ with $\|x\| = 1$:

$$\|Ax\|^2 = (Ax, Ax) = (x, A^*Ax) \leq \|x\| \cdot \|A^*Ax\| = \|A^*Ax\| \leq \lambda_n$$

Cauchy-Schwarz

Thus, $\|Ax\| \leq \sqrt{\lambda_n}$.

To show equality, it suffices to find some $x \in X$, $\|x\| = 1$ for which $\|Ax\| = \sqrt{\lambda_n}$.

Take the corresponding eigenvector V_n of A^*A:

$$\|AV_n\|^2 = (AV_n, AV_n) = (V_n, A^*AV_n) = (V_n, \lambda_n V_n) = \lambda_n V_n.$$

Thus, $\|AV_n\| = \sqrt{\lambda_n}$.

\Box