MthSc 311: Linear Algebra (Fall 2012) Midterm 2 November 9, 2012

NAME:

Instructions

- Exam time is 50 minutes
- You may *not* use notes or books.
- Calculators are *not* allowed.
- Show your work. Partial credit will be given.

Question	Points Earned	Maximum Points
1		7
2		9
3		8
4		4
4		4
5		5
0		0
6		8
0		0
7		9
Total		50

Student to your left:

Student to your right:

- 1. (7 pts) Give an example of each of the following:
 - (a) A set S of three nonzero vectors in \mathbb{R}^3 for which S^{\perp} is a line.

(b) An orthonormal basis for \mathbb{R}^3 , including the vector $\boldsymbol{q}_1 = (1, 1, 1)/\sqrt{3}$.

(c) A matrix that has no real-valued eigenvalues (that is, they are all complex numbers).

(d) A 2×2 matrix with a repeated eigenvalue but only one (linearly independent) eigenvector.

(e) A 2×2 matrix with a repeated eigenvalue but two (linearly independent) eigenvectors.

(f) A non-orthogonal matrix that has orthonormal columns.

(g) A non-zero matrix A and an eigenvector $v \neq 0$ that is in its nullspace.

- 2. (9 pts) Fill in the blanks. No explanations needed, but think carefully before answering!
 - (a) If Ax = b has no solution, then the closest vector to b in C(A) is ______

(either a formula or a description in words is fine).

- (b) If Ax = b has a solution x, then the closest vector to b in $N(A^T)$ is ______
- (c) Let \hat{x} be the least-squares solution to Ax = b. Then $b A\hat{x}$ is orthogonal to the

_____ of *A*.

(d) The formula for the projection matrix P onto the column space of a matrix A is P =

assuming that A has ______ columns. In this case, I - P is the projection

matrix onto the _____ of *A*.

(e) If Q is an orthogonal matrix, then _____ = I and the formula for the projec-

tion matrix onto the column space of Q in *simplified* form is P =_____.

(f) If \boldsymbol{v} is an eigenvector of \boldsymbol{A} with eigenvalue λ , then \boldsymbol{v} is in the nullspace of ______.

3. (8 pts) Find the determinant of the following matrices:

$$\boldsymbol{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}, \qquad \qquad \boldsymbol{B} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 2 & 3 & 0 \end{bmatrix}$$

[*Hint*: Cofactor expansion will work to find det **A**, but it is certainly not necessary.]

- 4. (4 pts) Suppose a 4×4 matrix **A** has det $\mathbf{A} = -1$. Find:
 - (a) $det(\frac{1}{2}\boldsymbol{A})$
 - (b) det(-A)
 - (c) $det(\mathbf{A}^2)$
 - (d) $det(\mathbf{A}^{-1})$
- 5. (5 pts) Use the Gram-Schmidt process to turn $\boldsymbol{a} = \begin{bmatrix} 1\\ 0\\ 3 \end{bmatrix}$ and $\boldsymbol{b} = \begin{bmatrix} 1\\ -2\\ 2 \end{bmatrix}$ into an orthonormal set.

6. (8 pts) Find the eigenvalues and the eigenvectors of $\mathbf{A} = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix}$.

- 7. (9 pts) Consider the plane x = y in \mathbb{R}^3 . Note that this plane is the span of the set $S = \{v_1, v_2\}$ that contains the vectors $v_1 = (1, 1, 0)$ and $v_2 = (0, 0, 1)$.
 - (a) Find a basis for S^{\perp} , the *orthogonal complement* of the plane x = y.

(b) Project the vector
$$\boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 onto the plane $x = y$.

(c) Project the vector
$$\boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 onto S^{\perp} . [*Hint*: Look at Problem 2.]