Read: Strang, Section 1.1, 1.2, and 2.1.

1. For each vector \boldsymbol{v} , compute its norm, $||\boldsymbol{v}|| = (\boldsymbol{v} \cdot \boldsymbol{v})^{1/2}$, and then normalize it, by computing $\boldsymbol{v}/||\boldsymbol{v}||$.

$$\boldsymbol{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \qquad \boldsymbol{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad \boldsymbol{w} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}.$$

2. For a unit vector \boldsymbol{n} , the *projection* of \boldsymbol{v} onto \boldsymbol{n} is the quantity $\boldsymbol{v} \cdot \boldsymbol{n}$. This measures the magnitude of \boldsymbol{v} in the \boldsymbol{n} -direction. Consider the following four unit vectors:

$$\boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \boldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \boldsymbol{n}_1 = \begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}, \quad \boldsymbol{n}_2 = \begin{bmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}$$

- (a) Draw the vectors $\{e_1, e_2\}$ in \mathbb{R}^2 , and sketch the square "grid" that they determine. Do the same thing for $\{n_1, n_2\}$ but on a new set of axes.
- (b) Write the vector $\boldsymbol{w} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ as a *linear combination* of $\{\boldsymbol{e}_1, \boldsymbol{e}_2\}$. That is, write $\boldsymbol{w} = a_1\boldsymbol{e}_1 + a_2\boldsymbol{e}_2$ and determine $a_1, a_2 \in \mathbb{R}$. Then, write \boldsymbol{w} as a linear combination of $\{\boldsymbol{n}_1, \boldsymbol{n}_2\}$.
- (c) Sketch \boldsymbol{w} on both sets of axes, and show how these sketches match your answers to Part (b).
- (d) The 2 × 2 matrix $\mathbf{A} = [\mathbf{n}_1 \ \mathbf{n}_2]$ can be thought of as a *linear map*, $\mathbf{A} \colon \mathbb{R}^2 \to \mathbb{R}^2$. Describe this linear map (geometrically) in a sentence. [*Hint*: You can think of the "input" as one of your grids, and the "output" as the other grid.]
- 3. A set $\{v_1, \ldots, v_n\}$ of vectors is orthogonal (or perpendicular) if $v_i \cdot v_j = 0$ for all $i \neq j$. The set is furthermore orthonormal if each v_i is a unit vector. That is, if

$$\boldsymbol{v}_i \cdot \boldsymbol{v}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j. \end{cases}$$

(a) Show that the set of vectors $\{v_1, v_2, v_3\}$, where

$$\boldsymbol{v}_1 = \begin{bmatrix} 1\\2\\-2 \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \quad \boldsymbol{v}_3 = \begin{bmatrix} -4\\1\\-1 \end{bmatrix}.$$

is an orthogonal set, but not orthonormal.

- (b) Normalize v_1 , v_2 , and v_3 to get an orthonormal *basis* of \mathbb{R}^3 , $\{n_1, n_2, n_3\}$.
- (c) Express the vector $\boldsymbol{w} = (1, 2, 3)$ in terms of $\boldsymbol{n}_1, \boldsymbol{n}_2$, and \boldsymbol{n}_3 . That is, find a_1, a_2 , and a_3 such that

$$\boldsymbol{w} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = a_1 \boldsymbol{n}_1 + a_2 \boldsymbol{n}_2 + a_3 \boldsymbol{n}_3.$$

- (d) Express the vector \boldsymbol{w} as a linear combination of \boldsymbol{v}_1 , \boldsymbol{v}_2 , and \boldsymbol{v}_3 . That is, write $\boldsymbol{w} = b_1 \boldsymbol{v}_1 + b_2 \boldsymbol{v}_2 + b_3 \boldsymbol{v}_3$ and find a formula for each b_i . [*Hint*: It should be in entirely in terms of dot products of \boldsymbol{v}_i and \boldsymbol{w} . Start by substituting $\boldsymbol{v}_i/||\boldsymbol{v}_i||$ in for \boldsymbol{n}_i in your answer to Part (c).]
- 4. Consider the matrix $\boldsymbol{A} = [\boldsymbol{u} \ \boldsymbol{v} \ \boldsymbol{w}] = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$.
 - (a) Find a non-zero linear combination $x_1 \boldsymbol{u} + x_2 \boldsymbol{v} + x_3 \boldsymbol{w}$ of the column vectors of \boldsymbol{A} that gives the zero vector.
 - (b) Describe the set of all solutions to $x_1 \boldsymbol{u} + x_2 \boldsymbol{v} + x_3 \boldsymbol{w} = \boldsymbol{0}$. [*Hint*: It is a line. Which line is it?]
 - (c) Describe the set of all *linear combinations* $x_1 \boldsymbol{u} + x_2 \boldsymbol{v} + x_3 \boldsymbol{w}$. We say that this is the subspace of \mathbb{R}^3 that is spanned by the set $\{\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}\}$.
- 5. Given an $n \times m$ matrix $\mathbf{A} = [a_{ij}]$, the *transpose* of \mathbf{A} is an $m \times n$ matrix defined as $\mathbf{A}^T = [a_{ji}]$. For each of the following three matrices \mathbf{M} , compute its transpose \mathbf{M}^T , as well as the products $\mathbf{M}^T \mathbf{M}$ and $\mathbf{M} \mathbf{M}^T$.

$$\boldsymbol{A} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \qquad \boldsymbol{B} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \\ 0 & 4 \end{bmatrix}, \qquad \boldsymbol{C} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

6. Consider the following vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$, and the matrix $\boldsymbol{A} = [\boldsymbol{u} \ \boldsymbol{v} \ \boldsymbol{w}]$:

$$\boldsymbol{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}, \quad \boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}, \quad \boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}, \quad \boldsymbol{A} = \begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{bmatrix}.$$

- (a) Write out $A^T A$ in terms of the *dot products* of u, v and w.
- (b) Write out $\mathbf{A}^T \mathbf{A}$ in terms of the vectors \mathbf{u} , \mathbf{v} and \mathbf{w} and their transposes, but not their individual entries. [Recall that $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$.]
- (c) Give a complete characterization of which matrices \boldsymbol{A} have the property that $\boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{I}$, where \boldsymbol{I} is the *identity matrix*. Give a geometric description of your answer in terms of the column vectors.