Read: Strang, Section 2.4, 2.5, 2.6, 2.7

Suggested short conceptual exercises: Strang, Section 2.4, #2, 7, 11, 14, 32, 33. Section 2.5, #11, 15, 29. Section 2.7, #3-5, 8, 11, 12–16, 19.

- 1. Let $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} be $n \times n$ matrices.
 - (a) If A is invertible and AB = AC, prove that B = C.
 - (b) Find an example of three nonzero matrices such that AB = AC but $B \neq C$.
 - (c) Suppose that $B = C^{-1}AC$ is invertible. Find formulas for A, A^{-1} , and B^{-1} .
- 2. Let A be a 3×3 matrix where row 1 + row 2 = row 3. Give elementary answers to the following questions (that is, do not use terms such as "column space" or "nullspace".)

(a) Explain why
$$Ax = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 cannot have a solution.

- (b) Which vectors $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ might allow a solution to Ax = b? [*Hint*: Find a linear equation relating b_1, b_2 , and b_3 .]
- (c) What happens to row 3 in elimination?
- 3. Let A be a 3×3 matrix where column 1 + column 2 = column 3.
 - (a) Find a nonzero solution to Ax = 0.
 - (b) Elimination keeps column 1 + column 2 = column 3. Explain why there is no third pivot. Conclude that A is not invertible.
- 4. Let A be an invertible 3×3 matrix, and let B be the matrix obtained from A by taking the bottom row and making it the top row instead (and so the first and second rows of A become the second and third rows of B, respectively).
 - (a) Find the permutation matrix P that you need to multiply A by to get B. Do you need to multiply on the left or on the right?
 - (b) What is P^{-1} ?
 - (c) Find simple formulas for B^{-1} and B^{T} .
- 5. Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{bmatrix}$.
 - (a) What three elementary matrices E_{21} , E_{31} , and E_{32} put A into its upper triangular form, $E_{32}E_{31}E_{21}A = U$?

- (b) Multiply by E_{32}^{-1} , E_{31}^{-1} and E_{21}^{-1} to factor A into A = LU, where $L = E_{21}^{-1}E_{31}^{-1}E_{32}^{-1}$ is a lower triangular matrix whose entries are the *multipliers* of elimination and U is an upper triangular matrix with the pivots on the diagonal.
- (c) Factor $U = DU_1$, where D is a diagonal matrix that contains the pivots.
- (d) Factor $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{U}_1$, where \mathbf{L} is a lower triangular matrix with 1s on the diagonal and whose other entries are the multipliers, \mathbf{D} is a diagonal matrix that contains the pivots, and \mathbf{U}_1 is an upper triangular matrix with 1s on the diagonal.
- 6. Let A be a 3×3 matrix. Suppose you want to do the following operations on A: Subtract row 1 from row 2, subtract row 1 from row 3, and subtract row 2 from row 3.
 - (a) First, suppose you want to perform these operations on \boldsymbol{A} simultaneously. Write down a matrix \boldsymbol{B} that you need to multiply \boldsymbol{A} by to achieve this. Does $\boldsymbol{A}\boldsymbol{B}$ or $\boldsymbol{B}\boldsymbol{A}$ yield the desired result? What is \boldsymbol{B}^{-1} ? [Hint: You should be able to find \boldsymbol{B}^{-1} by inspection, but it's not quite a simple as flipping the signs of the entries below the diagonal.]
 - (b) Now, suppose you want to perform these operations on \boldsymbol{A} sequentially. Write down a matrix \boldsymbol{E} that you need to multiply \boldsymbol{A} by to achieve this. It should be the product of three elementary matrices [*Hint*: It should not the same matrix as B from Part (a)]. What is \boldsymbol{E}^{-1} .
 - (c) Suppose you factor $\mathbf{A} = \mathbf{L}\mathbf{U}$, where \mathbf{U} is the upper triangular matrix with the pivots on the diagonal, and \mathbf{L} is lower-triangular. What is the relationship between \mathbf{L} and \mathbf{E} ?
- 7. A matrix is symmetric if $A^T = A$. Factor the following matrices into $A = LDL^T$.

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}, \qquad A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Note that for any symmetric matrix, the A = LDU factorization simplifies to $A = LDL^{T}$.