Read: Strang, Section 3.1, 3.2.

Suggested short conceptual exercises: Strang, Section 3.1, #15, 16, 23, 25–27, 29. Section 3.2, #3, 6, 9, 10–18, 20, 28–31.

- 1. For each subsets of \mathbb{R}^3 , determine if it is a subspace. If not, give an explicit example of how it fails.
 - (a) The plane of vectors $\boldsymbol{b} = (b_1, b_2, b_3)$ with $b_1 = b_2$.
 - (b) The plane of vectors with $b_1 = 1$.
 - (c) The vectors with $b_1b_2b_3 = 0$.
 - (d) All linear combinations of $\boldsymbol{v} = (1, 4, 0)$ and $\boldsymbol{w} = (2, 2, 2)$.
 - (e) All vectors that satisfy $b_1 + b_2 + b_3 = 0$.
 - (f) All vectors with $b_1 \leq b_2 \leq b_3$.
- 2. Let P be the plane in \mathbb{R}^3 with equation x + y 2z = 4, which does not contain the zero-vector, and let P_0 be the parallel plane that passes through the origin.
 - (a) Write the plane P_0 as an equation ax + by + cz = d.
 - (b) Find two vectors in P and check that their sum is not in P.
 - (c) Find two non-collinear vectors in P_0 and check that their sum is in P_0 .
 - (d) Write the set of vectors in P_0 as a linear combination $c\boldsymbol{v} + d\boldsymbol{w}$ for some \boldsymbol{v} and \boldsymbol{w} .
 - (e) Write the set of vectors in P as $\boldsymbol{x}_p + c\boldsymbol{v} + d\boldsymbol{w}$. That is, find such an \boldsymbol{x}_p that works.
 - (f) Find a 3×2 matrix **A** whose column space of is the plane P_0 .
- 3. The matrix $\mathbf{A} = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}$ can be thought of as a "vector" is the space \mathcal{M} of all 2×2 matrices.
 - (a) Write down the zero vector in this space, the vector $\frac{1}{2}A$, and the vector -A.
 - (b) What matrices are in the smallest subspace containing A?
 - (c) Describe a subspace of M that contains $\boldsymbol{B} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ but not $\boldsymbol{C} = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$.
 - (d) If a subspace of \mathcal{M} contains \boldsymbol{B} and \boldsymbol{C} , must it contain \boldsymbol{I} ?
 - (e) Describe a nontrivial subspace of \mathcal{M} that contains no nonzero diagonal matrices.
- 4. Fix n, and let \mathcal{M} be the space of all $n \times n$ matrices. For either of the following subsets of \mathcal{M} , determine whether it is a subspace. If true, give a reason, and if false, show why it fails with an explicit example.
 - (a) The set of invertible matrices.

- (b) The set of singular (non-invertible) matrices.
- (c) The set of symmetric matrices $(\mathbf{A}^T = \mathbf{A})$.
- (d) The set of skew-symmetric matrices $(\mathbf{A}^T = -\mathbf{A})$.
- (e) The set of unsymmetric matrices $(\mathbf{A}^T \neq \mathbf{A})$.
- 5. For each system, determine which right sides (find a condition on b_1 , b_2 , and b_3) that makes them solvable. Describe the column space geometrically (line, plane, \mathbb{R}^3 , etc.) in each case.

$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 4 \\ 2 & 9 \\ -1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

6. Consider the following two matrices

	Γ1	2	2	4	6		2	4	2]
$oldsymbol{A}=$	1	2	3	6	9	B =	0	4	4
					3	B =	0	8	8

For each of these matrices, carry out the steps outlined below.

- (a) Reduce the matrix to its ordinary echelon form U. Determine which are the free variables and which are the pivot variables. What is its rank?
- (b) Find a *special solution* for each free variable. That is, set the free variable to 1 and the other free variables to 0.
- (c) By combining the special solutions, describe every solution to Ax = 0 and Bx = 0. This is the *nullspace* of the matrix.
- (d) Write down the *nullspace matrix* N, whose columns are the special solutions.
- (e) By further row operations on each U, find the reduced row echelon form R.
- (f) Embedded within the nonzero rows of \mathbf{R} are two (not necessarily contiguous) submatrices, one an identity matrix and the other a matrix \mathbf{F} . Identify \mathbf{F} . Now, \mathbf{N} consists of two (not necessarily contiguous) submatrices: what are they?
- (g) True or false: The nullspace of \mathbf{R} equals the nullspace of U?
- 7. For each of the following part, construct a matrix A with the specific properties specified. In this problem, $n \times 1$ column vectors are written as ordered *n*-tuples.
 - (a) The column space contains (1, 1, 1) and the nullspace is the line of multiples of (1, 1, 1, 1).
 - (b) \boldsymbol{A} is a 2 × 2 matrix whose column space equals its nullspace.
 - (c) The nullspace of A consists of all linear combinations of (2, 2, 1, 0) and (3, 1, 0, 1). [*Hint*: Try a 2 × 4 matrix, and think of the "column picture."]
 - (d) The nullspace of \boldsymbol{A} consists of all multiples of (4, 3, 2, 1).
 - (e) The column space contains (1, 1, 5) and (0, 3, 1) and the nullspace contains (1, 1, 2).