Read: Strang, Section 8.2. Suggested short conceptual exercises: #15–18.

Consider the graph shown below, on n = 4 vertices and m = 4 edges.

Answer the following questions. *Write clearly and concisely*! Part of your grade will be on the presentation of your solutions.

- 1. Write down the 4×4 incidence matrix \boldsymbol{A} for this graph, given the vertex and edge labels above. Compute the rank of \boldsymbol{A} and solve $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$, thereby finding its nullspace. The components of \boldsymbol{x} are the *potentials* at the vertices. Describe in a sentence what a vector \boldsymbol{x} in $N(\boldsymbol{A})$ physically represents. What type of graph would have $N(\boldsymbol{A})$ of dimension greater than 1?
- 2. Solve $\mathbf{A}^T \mathbf{y} = \mathbf{0}$ for \mathbf{y} , thereby finding the left nullspace of \mathbf{A} . Recall that rank $\mathbf{A} = \operatorname{rank} \mathbf{A}^T$. The components of \mathbf{y} are *currents* on the edges. Describe in a sentence what a vector \mathbf{y} in $N(\mathbf{A}^T)$ physically represents.
- 3. Use elimination to find the ordinary echelon matrix U of A. What spanning tree corresponds to the nonzero rows of U? Sketch this tree on the network.
- 4. Determine the requirement(s) that the b_i 's must satisfy for Ax = b to have a solution. The physical interpretation of this is *Kirchoff's voltage law* (KVL) – the components of Ax add to zero around every loop (so no voltage drop). How are the feasible **b**'s related to your answer to Problem 2? Decribe in a sentence what such a feasible **b** physically represents, and what a vector **x** solving Ax = b represents.
- 5. The equation $\mathbf{A}^T \mathbf{y} = \mathbf{f}$ is *Kirchoff's current law* (KCL), and physically represents that at each vertex, flow in equals flow out (including sources). The vector $\mathbf{f} = (-1, 0, 0, 1)$ lies in $C(\mathbf{A}^T)$, and so $\mathbf{A}^T \mathbf{y} = \mathbf{f}$ has a solution. Solve for \mathbf{y} , and sketch the physical situation of the potential, current flows, and voltage sources and sink on the network.

Ohm's Law states that current is $\boldsymbol{y} = -\boldsymbol{C}\boldsymbol{A}\boldsymbol{x}$, where the \boldsymbol{C} is the conductance matrix which is diagonal where the (i, i)-entry is the conductance c_i on edge i. The relationship between potentials, currents, and voltage sources and sinks is summarized in the diagram below.

Remark. In circuit theory (in physics and electrical engineering), current flows from higher potential to lower potential, which is why current is y = -CAx, rather than y = CAx. This artificial negative sign does not appear when this equation arises in mechanical engineering, where y = CAx is called *Hooke's Law* for mass-spring systems, and C is the diagonal matrix of the spring elasticities.

- 6. First, consider the case when all conductances are 1, so C = I, and compute $A^T C A = A^T A$ (recall that it is symmetric!). Next, suppose the potentials at the nodes are given by $\boldsymbol{x} = (1, 0, 1, 0)$. Compute the resulting currents $\boldsymbol{y} = -CA\boldsymbol{x}$ and the vector \boldsymbol{f} of sources and sinks. Note that $\boldsymbol{f} = A^T A \boldsymbol{x}$, by KCL. Sketch the network and include the potentials \boldsymbol{x} , the currents \boldsymbol{y} , and the sources and sinks \boldsymbol{f} on the graph. Remember that at each node, flow in must equal flow out!
- 7. Now, suppose the conductances are $c_1 = 1$ and $c_2 = c_3 = c_4 = 2$. Moreover, let $\mathbf{f} = (1, -3, 4, -2)$ be the vector of sources and sinks. Determine the potentials at each node by solving $\mathbf{A}^T \mathbf{C} \mathbf{A} \mathbf{x} = \mathbf{f}$ for \mathbf{x} . Sketch the network and include the potentials \mathbf{x} , the currents \mathbf{y} , and the sources and sinks \mathbf{f} . Compare your answer to that of the previous problem.