Read: Strang, Section 4.1, 4.2.

Suggested short conceptual exercises: Strang, Section 4.1, #1, 2, 4, 5, 8–10, 13, 15, 18,–21, 24–29. Section 4.2, #13, 18, 21–28.

1. Construct a nonzero matrix A with the required property or say why it is impossible:

(a) The column space contains
$$\begin{bmatrix} 1\\2\\-3 \end{bmatrix}$$
 and $\begin{bmatrix} 3\\-1\\2 \end{bmatrix}$, and the nullspace contains $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$.
(b) The row space contains $\begin{bmatrix} 1\\2\\-3 \end{bmatrix}$ and $\begin{bmatrix} 3\\-1\\2 \end{bmatrix}$, and the nullspace contains $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$.
(c) $\mathbf{A}\mathbf{x} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ has a solution and $\mathbf{A}^T \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$

- (d) Every row is orthogonal to every column.
- (e) The sum of the columns is the zero vector, and the sum of the rows is a vector with all 1's.
- 2. Consider the following system of equations Ax = b:

$$x + 2y + 2z = b_1$$

$$2x + 2y + 3z = b_2$$

$$3x + 4y + 5z = b_3.$$

- (a) Find numbers y_1 , y_2 , y_3 to multiply the left-hand sides of the equations so they add to 0. You have found a vector \boldsymbol{y} in which subspace? Write $\boldsymbol{y}^T \boldsymbol{b} = 0$ in terms of b_1 , b_2 , and b_3 ?
- (b) Using orthogonality of subspaces, what must be the case about \boldsymbol{y} and $\boldsymbol{b} = (b_1, b_2, b_3)$ for there to be a solution to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$? Does this condition hold for $\boldsymbol{b} = (5, 5, 9)$?
- (c) What happens when we left-multiply both sides of the equation Ax = (5, 5, 9) by y^{T} , where y is from Part (a)?
- 3. For each matrix, accurately sketch the four fundamental subspaces on two \mathbb{R}^2 plots so that orthogonal pairs of subspaces are plotted together. This is the "grid picture."

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \qquad \qquad \boldsymbol{B} = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}$$

- 4. For a set S, let S^{\perp} denote the *orthogonal complement* of S, i.e., the set of vectors orthogonal to all vectors in S. Note that even if S is not a subspace, S^{\perp} is.
 - (a) If S is the subspace of \mathbb{R}^3 containing only the zero vector, what is S^{\perp} ? (Find a basis.)

- (b) If S is spanned by (1, 1, 1), what is S^{\perp} ? (Find a basis.)
- (c) If S is spanned by (1, 1, 1) and (1, 1, -1), what is a basis for S^{\perp} ? (Find a basis.)
- (d) Now, suppose S is not a subspace, but rather just the set containing the two vectors (1, 1, 1) and (1, 1, -1). What is S^{\perp} ? It is the nullspace of what matrix?
- (e) Suppose S is a set of vectors (not necessarily a subspace). Describe as concisely as possible what subspace $(S^{\perp})^{\perp}$ is. What is the relation between S and $(S^{\perp})^{\perp}$ when S actually is a subspace.

5. Let
$$\boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
 and $\boldsymbol{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

- (a) Project **b** onto the line through **a**. Check that e = b p is orthogonal to **a**.
- (b) Find the projection matrix $\boldsymbol{P} = \frac{\boldsymbol{a}\boldsymbol{a}^T}{\boldsymbol{a}^T\boldsymbol{a}}$ onto the line through \boldsymbol{a} . Verify that $\boldsymbol{P}^2 = \boldsymbol{P}$. Multiply $\boldsymbol{P}\boldsymbol{b}$ to compute the projection \boldsymbol{p} .

6. Let
$$\boldsymbol{a}_1 = \begin{bmatrix} -1\\ 2\\ 2 \end{bmatrix}$$
, $\boldsymbol{a}_2 = \begin{bmatrix} 2\\ 2\\ -1 \end{bmatrix}$, $\boldsymbol{a}_3 = \begin{bmatrix} 2\\ -1\\ 2 \end{bmatrix}$, and $\boldsymbol{b} = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$.

- (a) Compute the projection matrices P_1 and P_2 onto the lines through a_1 and a_2 . Multiply those matrices and explain geometrically why P_1P_2 is what it is.
- (b) Project $\boldsymbol{b} = (1, 0, 0)$ onto the lines through \boldsymbol{a}_1 and \boldsymbol{a}_2 and also onto \boldsymbol{a}_3 . Add up the three projections $\boldsymbol{p}_1 + \boldsymbol{p}_2 + \boldsymbol{p}_3$.
- (c) Find the projection matrix P_3 onto a_3 . Verify that $P_1 + P_2 + P_3 = I$. This means that the basis a_1, a_2, a_3 is orthogonal! (Think about why.)
- 7. Suppose P is a projection matrix onto the column space of A.
 - (a) Show that the matrix I P is also a projection matrix by verifying that $(I P)^T = I P$ and $(I P)^2 = I P$ both hold.
 - (b) What subspace does the matrix I P project onto? [*Hint*: Note that b = Pb + (I P)b holds for any vector b!]
- 8. Consider the plane \mathcal{P} in \mathbb{R}^3 given by x y 2z = 0.
 - (a) Find a matrix whose columns are a basis for \mathcal{P} .
 - (b) Compute $\boldsymbol{P} = \boldsymbol{A}(\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T$, which is the projection matrix onto \mathcal{P} .
 - (c) Find a vector e that is orthogonal to \mathcal{P} . Compute the projection matrix $Q = ee^T/e^T e$ and I Q. How are P and Q related?