Read: Strang, Section 4.3, 4.4.

Suggested short conceptual exercises: Strang, Section 4.3, #12–16, 25, 26, 29. Section 4.4, #3, 4, 8, 9, 19.

- 1. For this problem, consider the four data points $(t_i, b_i) = (0, 0)$, (1, 8), (3, 8), and (4, 20). Let $\mathbf{t} = (0, 1, 3, 4)$ be the vector of inputs and $\mathbf{b} = (0, 8, 8, 20)$ the vector of outputs. Feel free to use a computer to solve *any* systems of equations you encounter throughout this problem.
 - (a) If there were a straight line b = C + Dt through these four points, then a certain equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ would have a solution, where $\mathbf{x} = (C, D)$. Write this equation in matrix form (that is, find \mathbf{A}).
 - (b) Instead, we wish to find the "best fit" line, which means we need to solve $A\hat{x} = p$, where p is the projection of b onto the column space of A. Write down the normal equations $A^T A \hat{x} = A^T b$, where $\hat{x} = (\hat{C}, \hat{D})$, and solve for \hat{x} .
 - (c) Check that e = b p is orthogonal to both columns of A. Compute ||e||, which is the shortest distance from b to the column space of A. Sketch a diagram of e, b, p, and the orthogonal subspaces C(A) and $N(A^T)$ to illustrate this.
 - (d) Plot the four data points in \mathbb{R}^2 (on the tb-plane) and sketch the best fit line through them that you just found. Clearly mark what the vectors $\mathbf{b} = (b_1, b_2, b_3, b_4)$, $\mathbf{e} = (e_1, e_2, e_3, e_4)$, and $\mathbf{p} = (p_1, p_2, p_3, p_4)$ represent.
 - (e) Write down $E := ||\boldsymbol{A}\boldsymbol{x} \boldsymbol{b}||^2$ as a sum of four squares—the last one is $(C + 4D 20)^2$, and compute $\partial E/\partial C$ and $\partial E/\partial D$. Set these derivatives equal to zero, and obtain scalars of the normal equations $\boldsymbol{A}^T \boldsymbol{A} \hat{\boldsymbol{x}} = \boldsymbol{A}^T \boldsymbol{b}$.
 - (f) The method above found the best fit degree-1 polynomial (line). Now, find the best fit degree-0 polynomial (horizontal line) b = C. Note that this will be a 4×1 system instead of a 4×2 system. Compute the vectors \boldsymbol{p} and \boldsymbol{e} , and the (squared) error $||\boldsymbol{e}||^2$.
 - (g) Find the best fit parabola (degree-2 polynomial) $b = C + Dt + Et^2$. On a new set of axes, plot the four data points and this parabola. Compute the vectors \boldsymbol{p} and \boldsymbol{e} , and the (squared) error $||\boldsymbol{e}||^2$.
 - (h) Find the best fit cubic (degree-3 polynomial) $b = C + Dt + Et^2 + Ft^3$. On a new set of axes, plot the four data points and this cubic. Compute the vectors \boldsymbol{p} and \boldsymbol{e} , and the (squared) error $||\boldsymbol{e}||^2$.
- 2. In this problem we will prove that orthonormal vectors are linearly independent two different ways.
 - (a) Vector proof: First, suppose that $c_1 \mathbf{q}_1 + c_2 \mathbf{q}_2 + \cdots + c_k \mathbf{q}_k = \mathbf{0}$. Show that each $c_i = 0$. [Hint: Start by multipling both sides of the equation by \mathbf{q}_i^T .]
 - (b) Matrix proof: Let Q be the matrix whose columns are the q_i 's. Show that if Qx = 0, then x = 0. [Hint: Since Q need not be square, you cannot assume Q^{-1} exists, but Q^T of course will.]

- 3. For each of the following, answer either *true* (with a reason) or *false* (with a counterexample).
 - (a) If \boldsymbol{Q} is an orthogonal matrix, then \boldsymbol{Q}^{-1} is orthogonal.
 - (b) If Q is an orthogonal matrix, then Q^T is orthogonal.
 - (c) If Q_1 and Q_2 are orthogonal matrices, then Q_1Q_2 is orthogonal.
 - (d) If Q is a matrix with orthonormal columns (need not be square), then ||Qx|| = ||x|| for every x.
- 4. What multiple of $\mathbf{A} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ should be subtracted from $\mathbf{b} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$ to make the resulting vector \mathbf{B} orthogonal to \mathbf{a} ? Sketch a figure showing \mathbf{A} , \mathbf{b} , and \mathbf{B} . Then normalize \mathbf{A} and \mathbf{B} to get an orthonormal set, \mathbf{q}_1 and \mathbf{q}_2 .
- 5. Let \boldsymbol{a} , \boldsymbol{b} , and \boldsymbol{c} be the (independent) column vectors of the matrix

$$\boldsymbol{M} = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{bmatrix} .$$

Use the Gram-Schmidt process to produce an orthonormal basis q_1 , q_2 , and q_3 . Then write M = QR, where Q is orthogonal and R is upper-triangular.

- 6. Recall that if ||u|| = 1, then the rank-1 matrix uu^T is the projection matrix onto u. In this case, $Q = I 2uu^T$ is a reflection matrix.
 - (a) Reflecting twice across the same axis is the identity. Verify that indeed, $Q^2 = I$.
 - (b) Compute $\boldsymbol{Q}\boldsymbol{u}$, and simplify this expression as much as possible.
 - (c) Suppose v is orthogonal to u. Compute Qv, and simplify as much as possible.
 - (d) Describe in plain English which subspace Q is reflecting across. Your answer should involve u. Include a sketch.
 - (e) Compute the reflection matrix $\mathbf{Q}_1 = \mathbf{I} 2\mathbf{u}_1\mathbf{u}_1^T$ where $\mathbf{u}_1 = (0, 1)$. Compute $\mathbf{Q}_1\mathbf{x}_1$, where $\mathbf{x}_1 = (a, b)$, and sketch the vectors \mathbf{u}_1 , \mathbf{x}_1 , and $\mathbf{Q}_1\mathbf{x}_1$ in the plane.
 - (f) Compute the reflection matrix $\mathbf{Q}_2 = \mathbf{I} 2\mathbf{u}_2\mathbf{u}_2^T$ where $\mathbf{u}_2 = (0, \sqrt{2}/2, \sqrt{2}/2)$. Compute $\mathbf{Q}_2\mathbf{x}_2$, where $\mathbf{x}_2 = (1, 1, 1)$, and sketch the vectors \mathbf{u}_2 , \mathbf{x}_2 , and $\mathbf{Q}_2\mathbf{x}_2$ in \mathbb{R}^3 .