Read: Strang, Section 8.3, 8.5, 10.1, 10.2.

Suggested short conceptual exercises: Strang, Section 8.3, #1, 4, 6, 8–11, 17. Sect. 8.5, #5.

- 1. Consider the following permutation matrix: $\boldsymbol{P}_4 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
 - (a) Find the four (complex-valued) eigenvalues and eigenvectors of P_4 .
 - (b) Write out the four eigenvalues you just found in polar form, $\lambda = Re^{i\theta}$. Write the corresponding eigenvectors in polar form, normalized so the first entry is 1, i.e., $\boldsymbol{v}_k = (e^{i0}, -, -, -) = (1, -, -, -).$
 - (c) Without actually computing them, venture a guess as to what the eigenvalues and eigenvectors of P_6 are the 6×6 matrix with five 1's below the diagonal and one in the upper-right corner.
- 2. Consider the following matrices

$$\boldsymbol{A}_1 = \begin{bmatrix} .6 & .9 \\ .4 & .1 \end{bmatrix}, \qquad \boldsymbol{A}_2 = \begin{bmatrix} .6 & .2 \\ .4 & .8 \end{bmatrix}, \qquad \boldsymbol{A}_3 = \begin{bmatrix} .6 & .9 \\ .1 & .6 \end{bmatrix}$$

- (a) Diagonalize each matrix by writing $A = S\Lambda S^{-1}$.
- (b) For each of these three matrices, compute the limit $A^k = S \Lambda^k S^{-1}$ as $k \to \infty$ if it exists.
- (c) Suppose \mathbf{A} is an $n \times n$ matrix that is diagonalizable (so it has n linearly independent eigenvectors). What must be true for the limit \mathbf{A}^k to exist as $k \to \infty$? What is needed for $\mathbf{A}^k \to \mathbf{0}$? Justify your answer.
- (d) Compute $(\mathbf{A}_3)^{10} \mathbf{u}_0$ for the following \mathbf{u}_0 :

$$\boldsymbol{u}_0 = \begin{bmatrix} 3\\1 \end{bmatrix}, \qquad \boldsymbol{u}_0 = \begin{bmatrix} 3\\-1 \end{bmatrix}, \qquad \boldsymbol{u}_0 = \begin{bmatrix} 6\\0 \end{bmatrix}$$

3. Consider the following three Markov matrices.

$$\boldsymbol{A} = \begin{bmatrix} 1 & .2 \\ 0 & .8 \end{bmatrix} \qquad \qquad \boldsymbol{A} = \begin{bmatrix} .2 & 1 \\ .8 & 0 \end{bmatrix} \qquad \qquad \boldsymbol{A} = \begin{bmatrix} .5 & .25 & .25 \\ .25 & .5 & .25 \\ .25 & .25 & .5 \end{bmatrix}$$

Carry out the following steps for each matrix.

- (a) Draw a weighted directed graph on $n \ (=2 \text{ or } 3)$ vertices showing the transition probabilities between states.
- (b) Find the eigenvalues and steady-state eigenvector.
- (c) Diagonalize \boldsymbol{A} by writing $\boldsymbol{A} = \boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$ and compute $\lim_{k \to \infty} \boldsymbol{A}^k$.

- 4. Every year, 10% of young people become old, 0.1% of young people become dead, and 5% of old people become dead. Assume there are no births and no zombies.
 - (a) Find the Markov matrix \boldsymbol{A} that models this process:

$$\begin{bmatrix} \text{young} \\ \text{old} \\ \text{dead} \end{bmatrix}_{k+1} = \begin{bmatrix} - & - & - \\ - & - & - \\ - & - & - \end{bmatrix} \begin{bmatrix} \text{young} \\ \text{old} \\ \text{dead} \end{bmatrix}_{k}.$$

- (b) Find the steady-state eigenvector by inspection alone.
- (c) Find the eigenvalues and eigenvectors of A. (Use a computer.)
- (d) Suppose there are 1000 young people initially. Compute the number of young, old, and dead people after 10 years. (Again, use a computer, but also use $A^k = S\Lambda^k S^{-1}$.)
- 5. Consider the set of all complex-valued 2π -periodic functions, which means that $f(z+2\pi) = f(z)$ for all z. This is a vector space and the infinite set $\{e^{inx} : n \in \mathbb{Z}\}$ is a basis. Define an *inner product* (i.e., dot product) on this space by

$$\langle f,g\rangle = \int_0^{2\pi} f(x)\overline{g(x)} \, dx.$$

- (a) Compute $\langle e^{inx}, e^{imx} \rangle$ and verify that this basis is indeed orthogonal. Recall that $\overline{e^{ix}} = e^{-ix}$, and be sure to consider the cases when n = m and $n \neq m$ separately.
- (b) Since $\{e^{inx} : n \in \mathbb{Z}\}$ is a basis, we can write any 2π -periodic function f(x) as

$$f(x) = \dots + c_{-2}e^{-2ix} + c_{-1}e^{-ix} + c_0 + c_1e^{ix} + c_2e^{2ix} + \dots = \sum_{n=-\infty}^{\infty} c_n e^{inx}.$$

Derive a formula for c_n . [*Hint*: Right-multiply both sides of the above equation by $\overline{e^{inx}}$ and integrate.]

- (c) Give an *orthonormal basis* for this vector space.
- (d) Define the function $f(x) = e^x$ on the interval $[0, 2\pi]$, and extend f to be periodic. Sketch the graph of this function and compute its complex Fourier series. That is, compute the coefficients c_n . You'll need to compute c_n (for $n \neq 0$) and c_0 separately.
- 6. Consider the matrix $\boldsymbol{A} = \begin{bmatrix} 2 & b \\ 1 & 0 \end{bmatrix}$.
 - (a) What number b makes A^{-1} not exist?
 - (b) What number b makes $\mathbf{A} = \mathbf{S} \mathbf{\Lambda} \mathbf{S}^{-1}$ impossible?
 - (c) What number b in makes $A = Q\Lambda Q^T$ possible? Note that Q is orthogonal, since $Q^{-1} = Q^T$.