1. Suppose \(B = M^{-1}AM \) is an \(n \times n \) matrix. The relationship between \(A, B, \) and \(M \) as functions \(\mathbb{R}^n \rightarrow \mathbb{R}^n \) is shown in the following commutative diagram:

Remember that matrix multiplication represents function composition, and so should be read from right-to-left.

(a) Draw a commutative diagram showing \(B^2 = (M^{-1}AM)(M^{-1}AM) = M^{-1}A^2M \). [Hint: Imagine “stacking” two diagrams horizontally.]

(b) Suppose that \(B = M^{-1}AM \) and \(C = N^{-1}BN \). Draw a commutative diagram showing how \(A \) is similar to \(C \). Write this out algebraically as well. You have just proven that similarity is transitive.

(c) Suppose \(A \) and \(B \) have the same eigenvalues \(\lambda_1, \ldots, \lambda_n \), all distinct. Prove that \(A \) and \(B \) are similar.

(d) Show by example how the result in Part (c) fails if the eigenvalues are not distinct.

2. Show that each pair \(A_i \) and \(B_i \) are similar by finding \(M_i \) such that \(B_i = M_i^{-1}A_iM_i \).

\[
A_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B_3 = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}.
\]

3. There are sixteen \(2 \times 2 \) matrices whose entries are 0’s and 1’s. Partition these matrices into “families” (equivalence classes) where similar matrices go into the same family.

4. Let \(A \) and \(B \) be \(n \times n \) matrices with \(B \) invertible.

(a) Prove that \(AB \) is similar to \(BA \).

(b) Illustrate your proof from Part (a) by correctly labeling the six maps in the following commutative diagram:

(c) Conclude that \(AB \) and \(BA \) have the same eigenvalues.
5. Consider the following Jordan blocks with eigenvalue λ:

\[J_2 = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}, \quad J_3 = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}, \quad J_4 = \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix}. \]

For each J_i, compute J_i^2 and J_i^3. Guess the form of J_i^k. Set $k = 0$ to find J_i^0 and $k = -1$ to find J_i^{-1}.

6. Suppose A is a 4×4 matrix that has exactly two distinct eigenvalues, $\lambda = 0$ and $\lambda = 2$, but you do not know how many of each occurs.

(a) Write down a list of matrices such that A must is similar to exactly one matrix on your list.

(b) For each matrix above, find the number of linearly independent eigenvectors for $\lambda = 0$ and for $\lambda = 2$. Recall that this is the dimension of $N(A - \lambda I)$.

7. Consider the following matrices: $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$, $A^T A = \begin{bmatrix} 5 & 15 \\ 15 & 45 \end{bmatrix}$, $A A^T = \begin{bmatrix} 10 & 20 \\ 20 & 40 \end{bmatrix}$.

(a) Find the eigenvalues σ_1^2, σ_2^2 and unit eigenvectors v_1, v_2 of $A^T A$.

(b) For the $\sigma_i \neq 0$, compute $u_i = A v_i / \sigma_i$ and verify that indeed $||u_i|| = 1$. Find the other u_i by computing the other unit eigenvector of $A A^T$.

(c) Write out the singular value decomposition (SVD), $A = U \Sigma V^T$.

(d) Write down orthonormal bases for the four fundamental subspaces of A.

(e) Describe all matrices that have the same four fundamental subspaces.