Read: Strang, Section 6.6, 6.7.

Suggested short conceptual exercises: Strang, Section 6.6, #1, 4, 7, 8, 12–15, 17, 20. Strang, Section 6.7, #3, 9–13, 15.

1. Suppose $\mathbf{B} = \mathbf{M}^{-1} \mathbf{A} \mathbf{M}$ is an $n \times n$ matrix. The relationship between \mathbf{A} , \mathbf{B} , and \mathbf{M} as functions $\mathbb{R}^n \to \mathbb{R}^n$ is shown in the following *commutative diagram*:

$$\mathbb{R}^{n} \xrightarrow{B} \mathbb{R}^{n}$$

$$M \downarrow M$$

$$\mathbb{R}^{n} \xrightarrow{A} \mathbb{R}^{n}$$

Remember that matrix multiplication represents function composition, and so should be read from *right-to-left*.

- (a) Draw a commutative diagram showing $\mathbf{B}^2 = (\mathbf{M}^{-1}\mathbf{A}\mathbf{M})(\mathbf{M}^{-1}\mathbf{A}\mathbf{M}) = \mathbf{M}^{-1}\mathbf{A}^2\mathbf{M}$. [*Hint*: Imagine "stacking" two diagrams horizontally.]
- (b) Suppose that $B = M^{-1}AM$ and $C = N^{-1}BN$. Draw a commutative diagram showing how A is similar to C. Write this out algebraically as well. You have just proven that similarity is *transitive*.
- (c) Suppose \boldsymbol{A} and \boldsymbol{B} have the same eigenvalues $\lambda_1, \ldots, \lambda_n$, all distinct. Prove that \boldsymbol{A} and \boldsymbol{B} are similar.
- (d) Show by example how the result in Part (c) fails if the eigenvalues are not distinct.
- 2. Show that each pair A_i and B_i are similar by finding M_i such that $B_i = M_i^{-1}A_iM_i$.

$$\boldsymbol{A}_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \ \boldsymbol{B}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ \boldsymbol{A}_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \ \boldsymbol{B}_2 = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \ \boldsymbol{A}_3 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \ \boldsymbol{B}_3 = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}.$$

- 3. There are sixteen 2×2 matrices whose entries are 0's and 1's. Partition these matrices into "families" (equivalence classes) where similar matrices go into the same family.
- 4. Let **A** and **B** be $n \times n$ matrices with **B** invertible.
 - (a) Prove that AB is similar to BA.
 - (b) Illustrate your proof from Part (a) by correctly labeling the six maps in the following commutative diagram:

$$\mathbb{R}^n \longrightarrow \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

$$\downarrow$$

$$\mathbb{R}^n \longrightarrow \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

(c) Conclude that \boldsymbol{AB} and \boldsymbol{BA} have the same eigenvalues.

5. Consider the following Jordan blocks with eigenvalue λ :

$$m{J}_2 = egin{bmatrix} \lambda & 1 \ 0 & \lambda \end{bmatrix}, \qquad m{J}_3 = egin{bmatrix} \lambda & 1 & 0 \ 0 & \lambda & 1 \ 0 & 0 & \lambda \end{bmatrix}, \qquad m{J}_4 = egin{bmatrix} \lambda & 1 & 0 & 0 \ 0 & \lambda & 1 & 0 \ 0 & 0 & \lambda & 1 \ 0 & 0 & 0 & \lambda \end{bmatrix}.$$

For each J_i , compute J_i^2 and J_i^3 . Guess the form of J_i^k . Set k=0 to find J_i^0 and k=-1 to find J_i^{-1} .

- 6. Suppose \boldsymbol{A} is a 4×4 matrix that has exactly two distinct eigenvalues, $\lambda = 0$ and $\lambda = 2$, but you do not know how many of each occurs.
 - (a) Write down a list of matrices such that \boldsymbol{A} must is similar to exactly one matrix on your list.
 - (b) For each matrix above, find the number of linearly independent eigenvectors for $\lambda = 0$ and for $\lambda = 2$. Recall that this is the dimension of $N(A \lambda I)$.
- 7. Consider the following matrices: $\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$, $\mathbf{A}^T \mathbf{A} = \begin{bmatrix} 5 & 15 \\ 15 & 45 \end{bmatrix}$, $\mathbf{A} \mathbf{A}^T = \begin{bmatrix} 10 & 20 \\ 20 & 40 \end{bmatrix}$.
 - (a) Find the eigenvalues σ_1^2 , σ_2^2 and unit eigenvectors \boldsymbol{v}_1 , \boldsymbol{v}_2 of $\boldsymbol{A}^T\boldsymbol{A}$.
 - (b) For the $\sigma_i \neq 0$, compute $\boldsymbol{u}_i = \boldsymbol{A}\boldsymbol{v}_i/\sigma_i$ and verify that indeed $||\boldsymbol{u}_i|| = 1$. Find the other \boldsymbol{u}_i by computing the other unit eigenvector of $\boldsymbol{A}\boldsymbol{A}^T$.
 - (c) Write out the singular value decomposition (SVD), $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.
 - (d) Write down orthonormal bases for the four fundamental subspaces of \boldsymbol{A} .
 - (e) Describe all matrices that have the same four fundamental subspaces.