Math 3110: Linear Algebra (Spring 2014) Midterm 2 April 1, 2014

NAME:

Instructions

- Exam time is 75 minutes
- You may *not* use notes or books.
- Calculators are *not* allowed.
- Show your work. Partial credit will be given.

Question	Points Earned	Maximum Points
1		7
2		8
3		8
4		4
5		5
6		9
7		9
Total		50

Student to your left:

Student to your right:

- 1. (7 pts) Give an example of each of the following:
 - (a) A non-identity permutation matrix with determinant 1.
 - (b) A set S of vectors for which $(S^{\perp})^{\perp} \neq S$.
 - (c) An orthonormal basis for \mathbb{R}^3 , including the vector $\boldsymbol{q}_1 = (1,1,0)/\sqrt{2}$.
 - (d) An orthogonal matrix \boldsymbol{Q} such that $\det \boldsymbol{Q} \neq 1.$

(e) A 3×3 projection matrix of rank 1.

- (f) A 3×3 projection matrix of rank 2.
- (g) A set of 3 distinct nonzero vectors in \mathbb{R}^3 for which the Gram-Schmidt process will definitely fail.

- 2. (8 pts) Fill in the blanks. No explanations needed, but think carefully before answering!
 - (a) Let \hat{x} be the least-squares solution to Ax = b. Then $b A\hat{x}$ lies in the

_____ of *A*.

- (b) When attempting to solve Ax = b, suppose b is in $N(A^T)$. Then the least squares solution \hat{x} lies in ______ (which subspace?).
- (c) The matrices \boldsymbol{A} and $\boldsymbol{A}^T \boldsymbol{A}$ always have the same _____
- (d) Suppose $\boldsymbol{P} = \boldsymbol{A}(\boldsymbol{A}^T\boldsymbol{A})^{-1}\boldsymbol{A}^T$, and $\boldsymbol{v} \in C(\boldsymbol{A})$, and $\boldsymbol{w} \in N(\boldsymbol{A}^T)$. Then
 - (i) **Pv** = _____
 - (ii) **P**w = _____
- (e) The determinant of an $n \times n$ projection matrix \boldsymbol{P} is non-zero if and only if \boldsymbol{P} is the projection

onto _____ (what subspace?).

(f) As long as **A** is _____, the Gram-Schmidt process allows one to factor the

matrix A = QR, where Q is orthogonal and R is _____.

3. (8 pts) Find the determinant of the following matrices:

$$\boldsymbol{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}, \qquad \qquad \boldsymbol{B} = \begin{bmatrix} 1 & 8 & 2 \\ 2 & 0 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$

[*Hint*: Cofactor expansion will work to find det **A**, but it is certainly not necessary.]

- 4. (4 pts) Suppose a 4×4 matrix **A** has det $\mathbf{A} = -3$. Find:
 - (a) $det(\frac{1}{2}\boldsymbol{A})$
 - (b) det(-A)
 - (c) $det(\mathbf{A}^2)$
 - (d) $det(\mathbf{A}^{-1})$
- 5. (5 pts) Use the Gram-Schmidt process to turn $\boldsymbol{a} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ and $\boldsymbol{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ into an orthonormal set.

- 6. (9 pts) Let L be the line x = y = z in \mathbb{R}^3 .
 - (a) Find a basis for L^{\perp} , the *orthogonal complement* of the line L

(b) Project the vector
$$\boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 onto the line L .

(c) Project the vector
$$\boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 onto L^{\perp} .

(d) Write the vector
$$\boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 as a sum: $\boldsymbol{b} = \boldsymbol{v} + \boldsymbol{w}$, where $\boldsymbol{v} \in L$ and $\boldsymbol{w} \in L^{\perp}$.

- 7. (9 points) Consider the points (0,0), (1,2), and (2,2) in \mathbb{R}^2 .
 - (a) Use the least squares method to find the best fit line Ct + D through these three points. Recall that to do this, you will need to solve an equation of the form

$$\boldsymbol{A}\begin{bmatrix} \boldsymbol{C}\\ \boldsymbol{D}\end{bmatrix} = \boldsymbol{b}.$$

for some matrix \boldsymbol{A} and vector \boldsymbol{b} .

(b) For the b you found above, calculate the (Euclidean) distance from it to the column space of A.