Read the following, which can all be found either in the textbook or on the course website.

- Chapters 8.4, 8.5 of Visual Group Theory (VGT).
- VGT Exercises 8.15–8.18, 8.44–8.50.

Write up solutions to the following exercises.

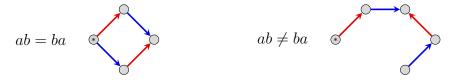
- 1. For each order given below, list all abelian groups of that order by writing each one as a product of cyclic groups of prime power order. Additionally, write each one as a product of cyclic groups organized by "elementary divisors."
 - (a) 8
 - (b) 54
 - (c) 400
 - (d) p^2q , where p and q are distinct primes.
- 2. The commutator subgroup of a group G is the subgroup

$$G' = \langle aba^{-1}b^{-1} \mid a, b \in G \rangle.$$

- (a) Prove that G is abelian if and only if $G' = \{e\}$.
- (b) Prove that $G' \triangleleft G$. [Hint: Take a "commutator" $c = aba^{-1}b^{-1}$ and prove that $gcg^{-1} \in G'$.]
- (c) Prove that G' is the intersection of all normal subgroups of G that contain the set $C := \{aba^{-1}b^{-1} \mid a, b \in G\}$:

$$G' = \bigcap_{C \subseteq N \lhd \, G} N$$

(d) If we quotient G by G', then we are in essence, "killing" all non-abelian parts of the Cayley diagram, as shown below:



Prove algebraically that G/G' is indeed abelian.

- 3. For each of the following groups G, compute its commutator subgroup G' and its abelianization G/G'. Finally, draw the subgroup lattice of G and circle every normal subgroup, and circle twice the one that is G'.
 - (a) V_4
 - (b) D_3
 - (c) Q_4

- 4. Find the commutator subgroup of each of the following groups and compute its abelianization.
 - (a) An abelian group A.
 - (b) The alternating group A_n , for $n \geq 5$. [Hint: A_n is a simple group, which means its only normal subgroups are $\langle e \rangle$ and A_n .]
 - (c) The dihedral group D_n for n even.
 - (d) The dihedral group D_n for n odd.
- 5. For each group G, find all automorphisms and make a multiplication table of Aut(G). What group is it isomorphic to?
 - (a) \mathbb{Z}_7
 - (b) \mathbb{Z}_8
 - (c) \mathbb{Z}_{10}
 - (d) V_4
 - (e) D_3