Read the following, which can all be found either in the textbook or on the course website.

- Chapters 9.1, 9.2 of Visual Group Theory (VGT).
- VGT Exercises 9.2, 9.3, 9.6–9.8, 9.17, 9.19.

Write up solutions to the following exercises.

- 1. Let G act on a set S. Prove that Stab(s) is a subgroup of G for every $s \in S$.
- 2. If C_5 acts on the set $S = \{A, B, C, D\}$, what will the action diagram be? Why?
- 3. Let S be the following set of 7 "binary squares":

- (a) Consider the (right) action of the group $G = V_4 = \langle v, h \rangle$ on S, where $\phi(v)$ reflects each square vertically, and $\phi(h)$ reflects each square horizontally. Draw an action diagram and compute the stabilizer of each element.
- (b) Consider the (right) action of the group $G = C_4 = \langle r | r^4 = e \rangle$ on S, where $\phi(r)$ rotates each square 90° clockwise. Draw an action diagram and compute the stabilizer of each element.
- (c) Suppose a group G of size 15 acts on S. Prove that there must be a fixed point.
- 4. Let $G = S_4$ act on itself by conjugation via the homomorphism

 $\phi: G \longrightarrow \operatorname{Perm}(S), \qquad \phi(g) = \text{the permutation that sends each } x \mapsto g^{-1}xg.$

- (a) How many orbits are there? Describe them as specifically as you can.
- (b) Find the orbit and the stabilizer of the following elements:
 - i. e ii. (1 2) iii. (1 2 3)
 - iv. (1 2 3 4)
- 5. A *p*-group is a group of order p^k for some integer k. Recall that the *center* of a group G is the set of all elements that commute with everything:

$$Z(G) = \{z \in G \mid gz = zg, \forall g \in G\}$$
$$= \{z \in G \mid g^{-1}zg = z, \forall g \in G\}$$

Finally, a group G is simple if its only normal subgroups are G and $\langle e \rangle$.

(a) Let G act on itself by conjugation via the homomorphism

 $\phi \colon G \longrightarrow \operatorname{Perm}(S), \qquad \phi(g) = \text{the permutation that sends each } x \mapsto g^{-1}xg.$ Prove that $\operatorname{Fix}(\phi) = Z(G).$

- (b) Prove that if G is a p-group, then |Z(G)| > 1. [Hint: Revisit the Class Equation.]
- (c) Use the result of the previous part to classify all simple p-groups.