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Overview

In this chapter we will introduce the concept of a subgroup and begin exploring some
of the rich mathematical territory that this concept opens up for us.

A subgroup is some smaller group living inside a larger group.

Before we embark on this leg of our journey, we must return to an important
property of Cayley diagrams that we’ve mentioned, but haven’t analyzed in depth.

This feature, called regularity, will help us visualize the new concepts that we will
introduce.

Let’s begin with an example.
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Regularity

Consider the group D3. It is easy to verify that frf = r−1.

Thus, starting at any node in the Cayley diagram, the path frf will always lead to the
same node as the path r−1.

That is, the following fragment permeates throughout the diagram.

Observe that equivalently, this is the same as saying that the path frfr will always
bring you back to where you started. (Because frfr = e).

Key observation

The algebraic relations of a group, like frf = r−1, give Cayley diagrams a uniform
symmetry – every part of the diagram is structured like every other.
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Regularity

Let’s look at the Cayley diagram for D3:

e

rr2

f

r2f rf

Check that indeed, frf = r−1 holds by following the corresponding paths starting at
any of the six nodes.

There are other patterns that permeate this diagram, as well. Do you see any?

Here are a couple: f 2 = e, r 3 = e.

Definition

A diagram is called regular if it repeats every one of its interval patterns throughout
the whole diagram, in the sense described above.
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Regularity

Every Cayley diagram is regular. In particular, diagrams lacking regularity do not
represent groups (and so they are not called Cayley diagrams).

Here are two diagrams that cannot be the Cayley diagram for a group because they
are not regular.

Recall that our original definition of a group was informal and “unofficial.”

One reason for this is that technically, regularity needs to be incorporated in the
rules. Otherwise, the previous diagram would describe a group of actions.

We’ve indirectly discussed the regularity property of Cayley diagrams, and it was
implied, but we haven’t spelled out the details until now.
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Subgroups

Definition

When one group is contained in another, the smaller group is called a subgroup of
the larger group. If H is a subgroup of G , we write H < G or H ≤ G .

All of the orbits that we saw in Chapter 5 are subgroups. Moreover, they are cyclic
subgroups. (Why?)

For example, the orbit of r in D3 is a subgroup of order 3 living inside D3. We can
write

〈r〉 = {e, r , r 2} < D3.

In fact, since 〈r〉 is really just a copy of C3, we may be less formal and write

C3 < D3.
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An example: D3

Recall that the orbits of D3 are

〈e〉 = {e}, 〈r〉 = 〈r 2〉 = {e, r , r 2}, 〈f 〉 = {e, f }

〈rf 〉 = {e, rf }, 〈r 2f 〉 = {e, r 2f } .

The orbits corresponding to the generators are staring at us in the Cayley diagram.
The others are more hidden.

e

rr2

f

r2f rf

It turns out that all of the subgroups of D3 are just (cyclic) orbits, but there are
many groups that have subgroups that are not cyclic.
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Another example: Z2 × Z2 × Z2

Here is the Cayley diagram for the group
Z2 × Z2 × Z2 (the “three-light switch group”).

A copy of the subgroup V4 is highlighted.

010

000

011

001

110

100

111

101

The group V4 requires at least two generators and hence is not a cyclic subgroup of
Z2 × Z2 × Z2. In this case, we can write

〈001, 010〉 = {000, 001, 010, 011} < Z2 × Z2 × Z2.

Every (nontrivial) group G has at least two subgroups:

1. the trivial subgroup: {e}
2. the non-proper subgroup: G . (Every group is a subgroup of itself.)

Question

Which groups have only these two subgroups?
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Yet one more example: Z6

It is not difficult to see that the subgroups of Z6 = {0, 1, 2, 3, 4, 5} are

{0}, 〈2〉 = {0, 2, 4}, 〈3〉 = {0, 3}, 〈1〉 = Z6.

Depending our choice of generators and layout of the Cayley diagram, not all of these
subgroups may be “visually obvious.”

Here are two Cayley diagrams for Z6, one generated by 〈1〉 and the other by 〈2, 3〉:

0

1

2

3

4

5 3

51

0

4 2
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One last example: D4

The dihedral group D4 has 10 subgroups, though some of these are isomorphic to
each other:

{e}, 〈r 2〉, 〈f 〉, 〈rf 〉, 〈r 2f 〉, 〈r 3f 〉︸ ︷︷ ︸
order 2

, 〈r〉, 〈r 2, f 〉, 〈r 2, rf 〉︸ ︷︷ ︸
order 4

,D4.

Remark

We can arrange the subgroups in a diagram called a subgroup lattice that shows
which subgroups contain other subgroups. This is best seen by an example.

The subgroup lattice of D4:

D4

zz
zz FF

FF

〈r 2, f 〉

}}
}} CC

CC
〈r〉 〈r 2, rf 〉

zz
zz FF

FF

〈f 〉

QQQQQQQQQQ 〈r 2f 〉
CC

CC
〈r 2〉 〈rf 〉

yy
yy

〈r 3f 〉

llllllllll

〈e〉
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A (terrible) way to find all subgroups

Here is a brute-force method for finding all subgroups of a given group G of order n.

Though this algorithm is horribly inefficient, it makes a good thought exercise.

0. we always have {e} and G as subgroups

1. find all subgroups generated by a single element (“cyclic subgroups”)

2. find all subgroups generated by 2 elements
...

n-1. find all subgroups generated by n − 1 elements

Along the way, we will certainly duplicate subgroups; one reason why this is so
inefficient and impractible.

This algorithm works because every group (and subgroup) has a set of generators.

At the end of this chapter, we will see how Lagrange’s theorem greatly narrows down
the possibilities for subgroups.
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Cosets

The regularity property of Cayley diagrams implies that identical copies of the
fragment of the diagram that correspond to a subgroup appear throughout the rest
of the diagram.

For example, the following figures highlight the repeated copies of 〈f 〉 = {e, f } in D3:

f

rfr2 f

e

r2 r

f

rfr2 f

e

r2 r

f

rfr2 f

e

r2 r

However, only one of these copies is actually a group! Since the other two copies do
not contain the identity, they cannot be groups.

Key concept

The elements that form these repeated copies of the subgroup fragment in the Cayley
diagram are called cosets.
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An example: D4

Let’s find all of the cosets of the subgroup H = 〈f , r 2〉 = {e, f , r 2, r 2f } of D4.

If we use r 2 as a generator in the Cayley diagram of D4, then it will be easier to
“see” the cosets.

Note that D4 = 〈r , f 〉 = 〈r , f , r 2〉. The cosets of H = 〈f , r 2〉 are:

H = 〈f , r 2〉 = {e, f , r 2, r 2f }︸ ︷︷ ︸
original

, rH = r〈f , r 2〉 = {r , r 3, rf , r 3f }︸ ︷︷ ︸
copy

.

e

r

r2

r3

f

rf

r2 f

r3 f

e

r

r2

r3

f

rf

r2 f

r3 f
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More on cosets
Definition

If H is a subgroup of G , then a (left) coset is a set

aH = {ah : h ∈ H},

where a ∈ G is some fixed element. The distingusihed element (in this case, a) that
we choose to use to name the coset is called the representative.

Remark

In a Cayley diagram, the (left) coset aH can be found as follows: start from node a
and follow all paths in H.

For example, let H = 〈f 〉 in D3. The coset {r , rf } of H is
the set

rH = r〈f 〉 = r{e, f } = {r , rf }.

Alternatively, we could have written (rf )H to denote the
same coset, because

rfH = rf {e, f } = {rf , rf 2} = {rf , r}.

f

rfr2 f

e

r2 r
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More on cosets

The following results should be “visually clear” from the Cayley diagrams and the
regularity property. Formal algebraic proofs that are not done here will be assigned as
homework.

Proposition

For any subgroup H ≤ G , the union of the (left) cosets of H is the whole group G .

Proof

The element g ∈ G lies in the coset gH, because g = ge ∈ gH = {gh | h ∈ H}. �

Proposition

Each (left) coset can have multiple representatives. Specifically, if b ∈ aH, then
aH = bH. �

Proposition

All (left) cosets of H ≤ G have the same size. �
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More on cosets

Proposition

For any subgroup H ≤ G , the (left) cosets of H partition the group G .

Proof

We know that the element g ∈ G lies in a (left) coset of H, namely gH. Uniqueness
follows because if g ∈ kH, then gH = kH. �

Subgroups also have right cosets:

Ha = {ha : h ∈ H}.

For example, the right cosets of H = 〈f 〉 in D3 are

Hr = 〈f 〉r = {e, f }r = {r , fr} = {r , r 2f }

(recall that fr = r 2f ) and

〈f 〉r 2 = {e, f }r 2 = {r 2, fr 2} = {r 2, rf }.

In this example, the left cosets for 〈f 〉 are different than the right cosets. Thus, they
must look different in the Cayley diagram.
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Left vs. right cosets

The left diagram below shows the left coset r〈f 〉 in D3: the nodes that f arrows can
reach after the path to r has been followed.

The right diagram shows the right coset 〈f 〉r in D3: the nodes that r arrows can
reach from the elements in 〈f 〉.

f

rfr2 f

e

r2 r

r f

rfr2 f

e

r2 r

r

Thus, left cosets look like copies of the subgroup, while the elements of right cosets
are usually scattered, because we adopted the convention that arrows in a Cayley
diagram represent right multiplication.

Key point

Left and right cosets are generally different.
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Left vs. right cosets

For any subgroup H ≤ G , we can think of G as the union of non-overlapping and
equal size copies of any subgroup, namely that subgroup’s left cosets.

Though the right cosets also partition G , the corresponding partitions could be
different!

Here are a few visualizations of this idea:

. . .

g2H

g1H

H
gnH

gn−1H

H

g1H

g2H

gnH

...

H

Hg1

Hg2

Hgn

. . .

Definition

If H < G , then the index of H in G , written [G : H], is the number of distinct left (or
equivalently, right) cosets of H in G .
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Left vs. right cosets: an example

The left and right cosets of the subgroup H = 〈f 〉 ≤ D3 are different:

r2H

rH

H

r2f r2

r rf

e f

Hr2Hr

H

r2f r2

r rf

e f

The left and right cosets of the subgroup N = 〈r〉 ≤ D3 are the same:

fN

N e r r2

f rf r2f Nf

N e r r2

f rf r2f

Proposition

If H ≤ G has index [G : H] = 2, then the left and right cosets of H are the same.
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Cosets of abelian groups

Recall that in some abelian groups, we use the symbol + for the binary operation.

In this case, left cosets have the form a + H (instead of aH).

For example, let G = (Z,+), and consider the subgroup H = 4Z = {4k | k ∈ Z}
consisting of multiples of 4.

The left cosets of H are

H = {. . . ,−12,−8,−4, 0, 4, 8, 12, . . . }
1 + H = {. . . ,−11,−7,−3, 1, 5, 9, 13, . . . }
2 + H = {. . . ,−10,−6,−2, 2, 6, 10, 14, . . . }
3 + H = {. . . ,−9,−5,−1, 3, 7, 11, 15, . . . } .

Notice that these are the same the the right cosets of H:

H , H + 1 , H + 2 , H + 3 .

Do you see why the left and right cosets of an abelian group will always be the same?

Also, note why it would be incorrect to write 3H for the coset 3 + H. In fact, 3H
would probably be interpreted to be the subgroup 12Z.
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A theorem of Joseph Lagrange
We are now ready for one of our first major theorems, which is named after the
prolific 18th century Italian/French mathematician Joseph Lagrange.

Lagrange’s Theorem

Assume G is finite. If H < G , then |H| divides |G |.

Proof

Suppose there are n left cosets of the subgroup H. Since they are all the same size,
and they partition G , we must have

|G | = |H|+ · · ·+ |H|︸ ︷︷ ︸
n copies

= n |H|.

Therefore, |H| divides |G |. �

Corollary

If |G | <∞ and H ≤ G , then

[G : H] =
|G |
|H| .
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Normal subgroups

Definition

A subgroup H of G is a normal subgroup of G if gH = Hg for all g ∈ G . We denote
this as H C G , or H E G .

Observation

Subgroups of abelian groups are always normal, because for any H < G ,

aH = {ah : h ∈ H} = {ha : h ∈ H} = Ha .

Example

Consider the subgroup H = 〈(0, 1)〉 = {(0, 0), (0, 1), (0, 2)} in the group Z3 × Z3 and
take g = (1, 0). Addition is done modulo 3, componentwise. The following depicts
the equality g + H = H + g :

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)
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Normal subgroups of nonabelian groups

Since subgroups of abelian groups are always normal, we will be particularly
interested in normal subgroups of non-abelian groups.

Example

Consider the subgroup N = {e, r , r 2} ≤ D3.

The cosets (left or right) of N are N = {e, r , r 2} and Nf = {f , rf , r 2f } = fN. The
following depicts this equality; the coset fN = Nf are the green nodes.

fN f

rfr2 f

e

r2 r

Nf f

rfr2 f

e

r2 r
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Normal subgroups of nonabelian groups

Here is another way to visualze the normality of the subgroup, N = 〈r〉 ≤ D3:

fN

N e r r2

f rf r2f Nf

N e r r2

f rf r2f

On contrast, the subgroup H = 〈f 〉 ≤ D3 is not normal:

r2H

rH

H

r2f r2

r rf

e f

Hr2Hr

H

r2f r2

r rf

e f

Proposition

If H ≤ G has index [G : H] = 2, then H E G .
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Conjugate subgroups

For a fixed element g ∈ G , the set

gHg−1 = {ghg−1 | h ∈ H}

is called the conjugate of H by g .

Observation 1

For any g ∈ G , the conjugate gHg−1 is a subgroup of G .

Proof

1. Identity: e = geg−1. X

2. Closure: (gh1g−1)(gh2g−1) = gh1h2g−1. X

3. Inverses: (ghg−1)−1 = gh−1g−1. X �

Observation 2

gh1g−1 = gh2g−1 if and only if h1 = h2. �

On the homework, you will show that H and gHg−1 are isomorphic subgroups.
(Though we don’t yet know how to do this, or precisely what it means.)
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How to check if a subgroup is normal

If gH = Hg , then right-multiplying both sides by g−1 yields gHg−1 = H.

This gives us a new way to check whether a subgroup H is normal in G .

Useful remark

The following conditions are all equivalent to a subgroup H ≤ G being normal:

(i) gH = Hg for all g ∈ G ; (“left cosets are right cosets”);

(ii) gHg−1 = H for all g ∈ G ; (“only one conjugate subgroup”)

(iii) ghg−1 ∈ H for all g ∈ G ; (“closed under conjugation”).

Sometimes, one of these methods is much easier than the others!

For example, all it takes to show that H is not normal is finding one element h ∈ H
for which ghg−1 6∈ H for some g ∈ G .

As another example, if we happen to know that G has a unique subgroup of size |H|,
then H must be normal. (Why?)
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