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Overview

In the previous chapter, we looked inside groups for smaller groups lurking inside.

Exploring the subgroups of a group gives us insight into the group’s internal structure.

There are two main topics that we will discuss in this chapter.

1. direct products: a method for making larger groups from smaller groups.

2. quotients: a method for making smaller groups from larger groups.

Before we begin, we’ll note that we can always form a direct product of two groups.

In constrast, we cannot always take the quotient of two groups. In fact, quotients are
restricted to some pretty specific circumstances, as we shall see.
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Direct products, algebraically
It is easiest to think of direct product of groups algebraically, rather than visually.

If A and B are groups, there is a natural group structure on the set

A× B = {(a, b) | a ∈ A, b ∈ B} .

Definition

The direct product of groups A and B consists of the set A× B, and the group
operation is done component-wise: if (a, b), (c, d) ∈ A× B, then

(a, b) ∗ (c, d) = (ac, bd).

We call A and B the factors of the direct product.

Note that the binary operations on A and B could be different. One might be ∗ and
the other +.

For example, in D3 × Z4:

(r 2, 1) ∗ (fr , 3) = (r 2fr , 1 + 3) = (rf , 0) .

These elements do not commute:

(fr , 3) ∗ (r 2, 1) = (fr 3, 3 + 1) = (f , 0) .
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Direct products, visually

Here’s one way to think of the direct product of two cyclic groups, say Zn × Zm:
Imagine a slot machine with two wheels, one with n spaces (numbered 0 through
n − 1) and the other with m spaces (numbered 0 through m − 1).

The actions are: spin one or both of the wheels. Each action can be labeled by where
we end up on each wheel, say (i , j).

Here is an example for a more general case: the element (r 2, 4) in D4 × Z6.

e

r

r2

r3

f

rf

r2 f

r3 f

0

1

2

3

4

5

Key idea

The direct product of two groups joins them so they act independently of each other.
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Cayley diagrams of direct products

Remark

Just because a group is not written with × doesn’t mean that there isn’t some
hidden direct product structure lurking. For example, V4 is really just C2 × C2.

Here are some examples of direct products:

C3 × C3 C3 × C2 C2 × C2 × C2

Even more surprising, the group C3×C2 is actually isomorphic to the cyclic group C6!

Indeed, the Cayley diagram for C6 using generators r 2 and r 3 is the same as the
Cayley diagram for C3 × C2 above.

We’ll understand this better in Chapter 8 when we study homomorphisms. For now,
we will focus our attention on direct products.
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Cayley diagrams of direct products

Let eA be the identity of A and eB the identity of B.

Given a Cayley diagram of A with generators a1, . . . , ak , and a Cayley diagram of B
with generators b1, . . . , b`, we can create a Cayley diagram for A× B as follows:

Vertex set: {(a, b) | a ∈ A, b ∈ B}.
Generators: (a1, eb), . . . , (ak , eb) and (ea, b1), . . . , (ek , b`).

Frequently it is helpful to arrange the vertices in a rectangular grid.

For example, here is a Cayley diagram for
the group Z4 × Z3:

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

What are the subgroups of Z4 × Z3? There are six (did you find them all?), they are:

Z4 × Z3, {0} × {0}, {0} × Z3, Z4 × {0}, Z2 × Z3, Z2 × {0}.
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Subgroups of direct products

Remark

If H ≤ A, and K ≤ B, then H × K is a subgroup of A× B.

For Z4 × Z3, all subgroups had this form. However, this is not always true.

For example, consider the group Z2 × Z2, which is really just V4. Since Z2 has two
subgroups, the following four sets are subgroups of Z2 × Z2:

Z2 × Z2, {0} × {0}, Z2 × {0} = 〈(1, 0)〉, {0} × Z2 = 〈(0, 1)〉.

However, one subgroup of Z2 × Z2 is missing from this list: 〈(1, 1)〉 = {(0, 0), (1, 1)}.

Exercise

What are the subgroups of Z2 × Z2 × Z2?

Here is a Cayley diagram, writing the elements of the
product as abc rather than (a, b, c).

Did you find all 16 subgroups?
010

000

011

001

110

100

111

101
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Direct products, visually
It’s not needed, but one can construct the Cayley diagram of a direct product using
the following “inflation” method.

Inflation algorithm

To make a Cayley diagram of A× B from the Cayley diagrams of A and B:

1. Begin with the Cayley diagram for A.

2. Inflate each node, and place in it a copy of the Cayley diagram for B. (Use
different colors for the two Cayley diagrams.)

3. Remove the (inflated) nodes of A while using the arrows of A to connect
corresponding nodes from each copy of B. That is, remove the A diagram but
treat its arrows as a blueprint for how to connect corresponding nodes in the
copies of B.

Cyclic group Z2 each node contains
a copy of Z4

direct product
group Z4 × Z2
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Properties of direct products

Recall the following definition from the end of the previous chapter.

Definition

A subgroup H < G is normal if xH = Hx for all x ∈ G . We denote this by H C G .

Assuming A and B are not trivial, the direct product A× B has at least four normal
subgroups:

{eA} × {eB} , A× {eB} , {eA} × B , A× B .

Sometimes we “abuse notation” and write AC A× B and B C A× B for the middle
two. (Technically, A and B are not even subsets of A× B.)

Here’s another observation: “A-arrows” are independent of “B-arrows.”

Observation

In a Cayley diagram for A× B, following “A-arrows” neither impacts or is impacted
by the location in group B.

Algebraically, this is just saying that (a, eb) ∗ (ea, b) = (a, b) = (ea, b) ∗ (a, eb).
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Multiplication tables of direct products

Direct products can also be visualized using multiplication tables.

However, the general process should be clear after seeing the following example;
constructing the table for the group Z4 × Z2:

0

1

2

3

1

2

3

0

2

3

0

1

3

0

1

2

multiplication table
for the group Z4

1

10

0

1

10

0

1

10

0

1

10

0

1

10

0

1

10

0

1

10

0

1

10

0

1

10

0

1

10

0

1

10

0

1

10

0

1

10

0

1

10

0

1

10

0

1

10

0
0

1

2

3

1

2

3

0

2

3

0

1

3

0

1

2

inflate each cell to contain a copy
of the multiplication table of Z2

(0,0)

(0,1)

(1,0)

(1,1)

(2,0)

(2,1)

(3,0)

(3,1)

(0,1)

(0,0)

(1,1)

(1,0)

(2,1)

(2,0)

(3,1)

(3,0)

(1,0)

(1,1)

(2,0)

(2,1)

(3,0)

(3,1)

(0,0)

(0,1)

(1,1)

(1,0)

(2,1)

(2,0)

(3,1)

(3,0)

(0,1)

(0,0)

(2,0)

(2,1)

(3,0)

(3,1)

(0,0)

(0,1)

(1,0)

(1,1)

(2,1)

(2,0)

(3,1)

(3,0)

(0,1)

(0,0)

(1,1)

(1,0)

(3,0)

(3,1)

(0,0)

(0,1)

(1,0)

(1,1)

(2,0)

(2,1)

(3,1)

(3,0)

(0,1)

(0,0)

(1,1)

(1,0)

(2,1)

(2,0)

join the little tables and element names
to form the direct product table for Z4×Z2
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Quotients

Direct products make larger groups from smaller groups. It is a way to multiply
groups.

The opposite procedure is called taking a quotient. It is a way to divide groups.

Unlike what we did with direct products, we will first describe the quotient operation
using Cayley diagrams, and then formalize it algebraically explore properties of the
resulting group.

Definition

To divide a group G by one of its subgroups H, follow these steps:

1. Organize a Cayley diagram of G by H (so that we can “see” the subgroup H in
the diagram for G).

2. Collapse each left coset of H into one large node. Unite those arrows that now
have the same start and end nodes. This forms a new diagram with fewer nodes
and arrows.

3. IF (and only if) the resulting diagram is a Cayley diagram of a group, you have
obtained the quotient group of G by H, denoted G/H (say: “G mod H”.) If
not, then G cannot be divided by H.
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An example: Z3 < Z6

Consider the group G = Z6 and its normal subgroup H = 〈2〉 = {0, 2, 4}.

There are two (left) cosets: H = {0, 2, 4} and 1 + H = {1, 3, 5}.

The following diagram shows how to take a quotient of Z6 by H.

0 2 4

3 5 1

Z6 organized by the
subgroup H = 〈2〉

0 2 4

3 5 1

Left cosets of H
are near each other

1+H

H

Collapse cosets
into single nodes

In this example, the resulting diagram is a Cayley diagram. So, we can divide Z6 by
〈2〉, and we see that Z6/H is isomorphic to Z2.

We write this as Z6/H ∼= Z2.
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A few remarks

Step 3 of the Definition says “IF the new diagram is a Cayley diagram . . . ”
Sometimes it won’t be, in which case there is no quotient.

The elements of G/H are the cosets of H. Asking if G/H exists amounts to
asking if the set of left (or right) cosets of H forms a group. (More on this later.)

In light of this, given any subgroup H < G (normal or not), we will let

G/H := {gH | g ∈ G}

denote the set of left cosets of H in G .

Not surprisingly, if G = A× B and we divide G by A (technically A× {e}), the
quotient group is B. (We’ll see why shortly).

Caveat!

The converse of the previous statement is generally not true. That is, if G/H is a
group, then G is in general not a direct product of H and G/H.
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An example: C3 < D3

Consider the group G = D3 and its normal subgroup H = 〈r〉 ∼= C3.

There are two (left) cosets: H = {e, r , r 2} and fH = {f , rf , r 2f }.

The following diagram shows how to take a quotient of D3 by H.

e r r2

f r2 f rf

D3 organized by the
subgroup H = 〈r〉

e r r2

f r2 f rf

Left cosets of H
are near each other

fH

H

Collapse cosets
into single nodes

The result is a Cayley diagram for C2, thus

D3/H ∼= C2 . However. . . C3 × C2 6∼= D3 .

Note that C3 × C2 is abelian, but D3 is not.
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Example: G = A4 and H = 〈x , z〉 ∼= V4

Consider the following Cayley diagram for G = A4 using generators 〈a, x〉.

e x c d

a b d2 b2

a2 c2 z y

Consider H = 〈x , z〉 = {e, x , y , z} ∼= V4. This subgroup is not “visually obvious” in
this Cayley diagram.

Let’s add z to the generating set, and consider the resulting Cayley diagram.
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Example: G = A4 and H = 〈x , z〉 ∼= V4

Here is a Cayley diagram for A4 (with generators x , z , and a), organized by the
subgroup H = 〈x , z〉 which allows us to see the left cosets of H clearly.

e x

z y

a c

d bd2

b2a2

c2

e

A4 organized by the
subgroup H = 〈x , z〉

e x

z y

a c

d bd2

b2a2

c2

e

Left cosets of H
are near each other

a2H aH

H

Collapse cosets
into single nodes

The resulting diagram is a Cayley diagram! Therefore, A4/H ∼= C3. However, A4 is
not isomorphic to the (abelian) group V4 × C3.
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Example: G = A4 and H = 〈a〉 ∼= C3

Let’s see an example where we cannot divide G by a particular subgroup H.

Consider the subgroup H = 〈a〉 ∼= C3 of A4.

Do you see what will go wrong if we try to
divide A4 by H = 〈a〉?

e x c d

a b d2 b2

a2 c2 z y

A4 organized by
the subgroup H =〈a〉

Left cosets of H
are near each other

Collapse cosets
into single nodes

This resulting diagram is not a Cayley diagram! There are multiple outgoing blue
arrows from each node.
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When can we divide G by a subgroup H?

Consider H = 〈a〉 ≤ A4 again.

The left cosets are easy to spot.

Remark

The right cosets are not the same as the left cosets! The blue arrows out of any
single coset scatter the nodes.

Thus, H = 〈a〉 is not normal in A4.

If we took the effort to check our first 3 examples, we would find that in each case,
the left cosets and right cosets coincide. In those examples, G/H existed, and H was
normal in G .

However, these 4 examples do not constitute a proof; they only provide evidence that
the claim is true.
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When can we divide G by a subgroup H?

Let’s try to gain more insight. Consider a group G with subgroup H. Recall that:

each left coset gH is the set of nodes that the H-arrows can reach from g
(which looks like a copy of H at g);

each right coset Hg is the set of nodes that the g -arrows can reach from H.

The following figure depicts the potential ambiguity that may arise when cosets are
collapsed in the sense of our quotient definition.

g2H g3H

g1H
•• ••

• • • •

blue arrows go from g1H
to multiple left cosets

collapse

cosets

g1H

g2H g3H

ambiguous
blue arrows

g2H

g1H
• • • •

•
• •
•

blue arrows go from g1H
to a unique left coset

collapse

cosets

g1H

g2H

unambiguous
blue arrows

The action of the blue arrows above illustrates multiplication of a left coset on the
right by some element. That is, the picture shows how left and right cosets interact.
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When can we divide G by a subgroup H?

When H is normal, gH = Hg for all g ∈ G .

In this case, to whichever coset one g arrow leads from H (the left coset), all g
arrows lead unanimously and unambiguously (because it is also a right coset Hg).

Thus, in this case, collapsing the cosets is a well-defined operation.

Finally, we have an answer to our original question of when we can take a quotient.

Quotient theorem

If H < G , then the quotient group G/H can be constructed if and only if H C G .

To summarize our “visual argument”: The quotient process succeeds iff the resulting
diagram is a valid Cayley diagram.

Nearly all aspects of valid Cayley diagrams are guaranteed by the quotient process:
Every node has exactly one incoming and outgoing edge of each color, because
H C G . The diagram is regular too.

Though it’s convincing, this argument isn’t quite a formal proof; we’ll do a rigorous
algebraic proof next.
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Quotient groups, algebraically

To prove the Quotient Theorem, we need to describe the quotient process
algebraically.

Recall that even if H is not normal in G , we will still denote the set of left cosets of
H in G by G/H.

Quotient theorem (restated)

When H C G , the set of cosets G/H forms a group.

This means there is a well-defined binary operation on the set of cosets. But how do
we “multipy” two cosets?

If aH and bH are left cosets, define

aH · bH := abH .

Clearly, G/H is closed under this operation. But we also need to verify that this
definition is well-defined.

By this, we mean that it does not depend on our choice of coset representative.
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Quotient groups, algebraically

Lemma

Let H C G . Multiplication of cosets is well-defined:

if a1H = a2H and b1H = b2H, then a1H · b1H = a2H · b2H.

Proof

Suppose that H C G , a1H = a2H and b1H = b2H. Then

a1H · b1H = a1b1H (by definition)
= a1(b2H) (b1H = b2H by assumption)
= (a1H)b2 (b2H = Hb2 since H C G)
= (a2H)b2 (a1H = a2H by assumption)
= a2b2H (b2H = Hb2 since H C G)
= a2H · b2H (by definition)

Thus, the binary operation on G/H is well-defined. �
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Quotient groups, algebraically

Quotient theorem (restated)

When H C G , the set of cosets G/H forms a group.

Proof.

There is a well-defined binary operation on the set of left (equivalently, right) cosets:
aH · bH = abH. We need to verify the three remaining properties of a group:

Identity. The coset H = eH is the identity because for any coset aH ∈ G/H,

aH · H = aeH = aH = eaH = H · aH .

Inverses. Given a coset aH, its inverse is a−1H, because

aH · a−1H = eH = a−1H · aH .

Closure. This is immediate, because aH · bH = abH is another coset in G/H. �
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Properties of quotients

Question

If H and K are subgroups and H ∼= K , then are G/H and G/K isomorphic?

For example, here is a Cayley diagram for
the group Z4 × Z2:

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

It is visually obvious that the quotient of Z4 × Z2 by the subgroup 〈(0, 1)〉 ∼= Z2 is
the group Z4.

The quotient of Z4 × Z2 by the subgroup 〈(2, 0)〉 ∼= Z2 is a bit harder to see.
Algebraically, it consists of the cosets

〈(2, 0)〉 , (1, 0) + 〈(2, 0)〉 , (0, 1) + 〈(2, 0)〉 , (1, 1) + 〈(2, 0)〉 .

It is now apparent that this group is isomorphic to V4.

Thus, the answer to the question above is “no.” Surprised?
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Normalizers

Question

If H < G but H is not normal, can we measure “how far” H is from being normal?

Recall that H C G iff gH = Hg for all g ∈ G . So, one way to answer our question is
to check how many g ∈ G satisfy this requirement. Imagine that each g ∈ G is
voting as to whether H is normal:

gH = Hg “yea” gH 6= Hg “nay”

At a minimum, every g ∈ H votes “yea.” (Why?)

At a maximum, every g ∈ G could vote “yea,” but this only happens when H really
is normal.

There can be levels between these 2 extremes as well.

Definition

The set of elements in G that vote in favor of H’s normality is called the normalizer
of H in G , denoted NG (H). That is,

NG (H) = {g ∈ G : gH = Hg} = {g ∈ G : gHg−1 = H}.

M. Macauley (Clemson) Chapter 7: Products and quotients Math 4120, Spring 2014 25 / 40

mailto:macaule@clemson.edu


Normalizers
Let’s explore some possibilities for what the normalizer of a subgroup can be. In
particular, is it a subgroup?

Observation 1

If g ∈ NG (H), then gH ⊆ NG (H).

Proof

If gH = Hg , then gH = bH for all b ∈ gH. Therefore, bH = gH = Hg = Hb. �

The deciding factor in how a left coset votes is whether it is a right coset (members
of gH vote as a block – exactly when gH = Hg).

Observation 2

|NG (H)| is a multiple of |H|.

Proof

By Observation 1, NG (H) is made up of whole (left) cosets of H, and all (left) cosets
are the same size and disjoint. �
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Normalizers
Consider a subgroup H ≤ G of index n. Suppose that the left and right cosets
partition G as shown below:

H g2H g3H gnH. . .

Partition of G by the
left cosets of H

H Hg2

Hg3

Hgn

...

Partition of G by the
right cosets of H

The cosets H, and g2H = Hg2, and gnH = Hgn all vote “yea”.

The left coset g3H votes “nay” because g3H 6= Hg3.

Assuming all other cosets vote “nay”, the normalizer of H is

NG (H) = H ∪ g2H ∪ gnH .

In summary, the two “extreme cases” for NG (H) are:

NG (H) = G : iff H is a normal subgroup

NG (H) = H: H is as “unnormal as possible”
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An example: A4

We saw earlier that H = 〈x , z〉C A4. Therefore, NA4 (H) = A4.

e x

z y

a c

d bd2

b2a2

c2

e

At the other extreme, consider 〈a〉 < A4 again, which is as far from normal as it can
possibly be: 〈a〉 6CA4.

No right coset of 〈a〉 coincides with a left coset, other than 〈a〉 itself. Thus,
NA4 (〈a〉) = 〈a〉.

Observation 3

In the Cayley diagram of G , the normalizer of H consists of the copies of H that are
connected to H by unanimous arrows.

M. Macauley (Clemson) Chapter 7: Products and quotients Math 4120, Spring 2014 28 / 40

mailto:macaule@clemson.edu


How to spot the normalizer in the Cayley diagram

The following figure depicts the six left cosets of H = 〈f 〉 = {e, f } in D6.

e

r

r2

r3

r4

r5 f

rf

r2f

r3f

r4f

r5f

〈f 〉

r3〈f 〉

r〈f 〉r5〈f 〉

r2〈f 〉r4〈f 〉

r3

e

r3f

f

〈f 〉

r3〈f 〉

Note that r 3H is the only coset of H (besides H, obviously) that cannot be reached
from H by more than one element of D6.

Thus, ND6 (〈f 〉) = 〈f 〉 ∪ r 3〈f 〉 = {e, f , r 3, r 3f } ∼= V4.

Observe that the normalizer is also a subgroup satisfying: 〈f 〉 � ND6 (〈f 〉) � D6.

Do you see the pattern for NDn (〈f 〉)? (It depends on whether n is even or odd.)
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Normalizers are subgroups!

Theorem 7.7

For any H < G , we have NG (H) < G .

Proof (different than VGT!)

Recall that NG (H) = {g ∈ G | gHg−1 = H}; “the set of elements that normalize H.”
We need to verify three properties of NG (H):

(i) Contains the identity;

(ii) Inverses exist;

(iii) Closed under the binary operation.

Identity. Naturally, eHe−1 = {ehe−1 | h ∈ H} = H.

Inverses. Suppose g ∈ NG (H), which means gHg−1 = H. We need to show that
g−1 ∈ NG (H). That is, g−1H(g−1)−1 = g−1Hg = H. Indeed,

g−1Hg = g−1(gHg−1)g = eHe = H .
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Normalizers are subgroups!

Proof (cont.)

Closure. Suppose g1, g2 ∈ NG (H), which means that g1Hg−1
1 = H and g2Hg−1

2 = H.
We need to show that g1g2 ∈ NG (H).

(g1g2)H(g1g2)−1 = g1g2Hg−1
2 g−1

1 = g1(g2Hg−1
2 )g−1

1 = g1Hg−1
1 = H .

Since NG (H) contains the identity, every element has an inverse, and is closed under
the binary operation, it is a (sub)group! �

Corollary

Every subgroup is normal in its normalizer:

H C NG (H) ≤ G .

Proof

By definition, gH = Hg for all g ∈ NG (H). Therefore, H C NG (H). �
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Conjugacy classes

Recall that for H ≤ G , the conjugate subgroup of H by a fixed g ∈ G is

gHg−1 = {ghg−1 | h ∈ H} .

Additionally, H is normal iff gHg−1 = H for all g ∈ G .

We can also fix the element we are conjugating. Given x ∈ G , we may ask:

“which elements can be written as gxg−1 for some g ∈ G?”

The set of all such elements in G is called the conjugacy class of x , denoted clG (x).
Formally, this is the set

clG (x) = {gxg−1 | g ∈ G} .

Remarks

In any group, clG (e) = {e}, because geg−1 = e for any g ∈ G .

If x and g commute, then gxg−1 = x . Thus, when computing clG (x), we only
need to check gxg−1 for those g ∈ G that do not commute with x .

Moreover, clG (x) = {x} iff x commutes with everything in G . (Why?)
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Conjugacy classes

Lemma

Conjugacy is an equivalence relation.

Proof

Reflexive: x = exe−1.

Symmetric: x = gyg−1 ⇒ y = g−1xg .

Transitive: x = gyg−1 and y = hzh−1 ⇒ x = (gh)z(gh)−1. �

Since conjugacy is an equivalence relation, it partitions the group G into equivalence
classes (conjugacy classes).

Let’s compute the conjugacy classes in D4. We’ll start by finding clD4 (r). Note that
we only need to compute grg−1 for those g that do not commute with r :

frf −1 = r 3, (rf )r(rf )−1 = r 3, (r 2f )r(r 2f )−1 = r 3, (r 3f )r(r 3f )−1 = r 3.

Therefore, the conjugacy class of r is clD4 (r) = {r , r 3}.

Since conjugacy is an equivalence relation, clD4 (r 3) = clD4 (r) = {r , r 3}.
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Conjugacy classes in D4

To compute clD4 (f ), we don’t need to check e, r 2, f , or r 2f , since these all commute
with f :

rfr−1 = r 2f , r 3f (r 3)−1 = r 2f , (rf )f (rf )−1 = r 2f , (r 3f )f (r 3f )−1 = r 2f .

Therefore, clD4 (f ) = {f , r 2f }.

What is clD4 (rf )? Note that it has size greater than 1 because rf does not commute
with everything in D4.

It also cannot contain elements from the other conjugacy classes. The only element
left is r 3f , so clD4 (rf ) = {rf , r 3f }.

e

r2

r

r3

f

rf

r2f

r3f

The “Class Equation”, visually:
Partition of D4 by its

conjugacy classes

We can write D4 = {e} ∪ {r 2}︸ ︷︷ ︸
these commute with everything in D4

∪{r , r 3} ∪ {f , r 2f } ∪ {r , r 3f }.
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The class equation

Definition

The center of G is the set Z(G) = {z ∈ G | gz = zg , ∀g ∈ G}.

Observation

clG (x) = {x} if and only if x ∈ Z(G).

Proof

Suppose x is in its own conjugacy class. This means that

clG (x) = {x} ⇐⇒ gxg−1 = x , ∀g ∈ G ⇐⇒ gx = xg , ∀g ∈ G ⇐⇒ x ∈ Z(G) .

�

The Class Equation

For any finite group G , |G | = |Z(G)|+
∑
| clG (xi )|

where the sum is taken over distinct conjugacy classes of size greater than 1.
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More on conjugacy classes

Proposition

Every normal subgroup is the union of conjugacy classes.

Proof

Suppose n ∈ N C G . Then gng−1 ∈ gNg−1 = N, thus if n ∈ N, its entire conjugacy
class clG (n) is contained in N as well. �

Proposition

Conjugate elements have the same order.

Proof

Consider x and y = gxg−1.

If xn = e, then (gxg−1)n = (gxg−1)(gxg−1) · · · (gxg−1) = gxng−1 = geg−1 = e.
Therefore, |x | ≥ |gxg−1|.

Conversely, if (gxg−1)n = e, then gxng−1 = e, and it must follow that xn = e.
Therefore, |x | ≤ |gxg−1|. �

M. Macauley (Clemson) Chapter 7: Products and quotients Math 4120, Spring 2014 36 / 40

mailto:macaule@clemson.edu


Conjugacy classes in D6

Let’s determine the conjugacy classes of D6 = 〈r , f | r 6 = e, f 2 = e, r i f = fr−i 〉.

The center of D6 is Z(D6) = {e, r 3}; these are the only elements in size-1 conjugacy
classes.

The only two elements of order 6 are r and r 5; so we must have clD6 (r) = {r , r 5}.

The only two elements of order 3 are r 2 and r 4; so we must have clD6 (r 2) = {r 2, r 4}.

Let’s compute the conjugacy class of a reflection r i f . We need to consider two cases;
conjugating by r j and by r j f :

r j(r i f )r−j = r j r i r j f = r i+2j f

(r j f )(r i f )(r j f )−1 = (r j f )(r i f )f r−j = r j fr i−j = r j r j−i f = r 2j−i f .

Thus, r i f and r k f are conjugate iff i and k are both even, or both odd.

e

r3

r

r5

r2

r4

f

rf

r2f

r3f

r4f

r5f

The Class Equation, visually:
Partition of D6 by its

conjugacy classes
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Conjugacy “preserves structure”

Think back to linear algebra. Two matrices A and B are similar (=conjugate) if
A = PBP−1.

Conjugate matrices have the same eigenvalues, eigenvectors, and determinant. In
fact, they represent the same linear map, but under a change of basis.

If n is even, then there are two “types” of
reflections of an n-gon: the axis goes
through two corners, or it bisects a pair of
sides.

Notice how in Dn, conjugate reflections had the same “type.” Do you have a guess
of what the conjugacy classes of reflections are in Dn when n is odd?

Also, conjugate rotations in Dn had the same rotating angle, but in the opposite
direction (e.g., r k and rn−k).

Next, we will look at conjugacy classes in the symmetric group Sn. We will see that
conjugate permutations have “the same structure.”
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Cycle type and conjugacy
Definition

Two elements in Sn have the same cycle type if when written as a product of disjoint
cycles, there are the same number of length-k cycles for each k.

We can write the cycle type of a permutation σ ∈ Sn as a list c1, c2, . . . , cn, where ci
is the number of cycles of length i in σ.

Here is an example of some elements in S9 and their cycle types.

(1 8) (5) (2 3) (4 9 6 7) has cycle type 1,2,0,1.

(1 8 4 2 3 4 9 6 7) has cycle type 0,0,0,0,0,0,0,0,1.

e = (1)(2)(3)(4)(5)(6)(7)(8)(9) has cycle type 9.

Theorem

Two elements g , h ∈ Sn are conjugate if and only if they have the same cycle type.

Big idea

Conjugate permutations have the same structure. Such permutations are the same
up to renumbering.
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An example
Consider the following permutations in G = S6:

g = (1 2) 1 2 3 4 5 6

h = (2 3) 1 2 3 4 5 6

r = (1 2 3 4 5 6) 1 2 3 4 5 6

Since g and h have the same cycle type, they are conjugate:

(1 2 3 4 5 6) (2 3) (1 6 5 4 3 2) = (1 2) .

Here is a visual interpretation of g = rhr−1:

1

2

3

4

5

6 g=(12) //

r

��

1

2

3

4

5

6

r

��
1

2

3

4

5

6

h=(23)
//

1

2

3

4

5

6
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