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Overview and some history

The quadradic formula is well-known. It gives us the two roots of a degree-2
polynomial ax2 + bx + c = 0:

x1,2 =
−b ±

√
b2 − 4ac

2a
.

There are formulas for cubic and quartic polynomials, but they are very complicated.
For years, people wondered if there was a quintic formula. Nobody could find one.

In the 1830s, 19-year-old political activist Évariste Galois, with no
formal mathematical training proved that no such formula existed.

He invented the concept of a group to solve this problem.

After being challenged to a dual at age 20 that he knew he would lose, Galois spent
the last few days of his life frantically writing down what he had discovered.

In a final letter Galois wrote, “Later there will be, I hope, some people who will find
it to their advantage to decipher all this mess.”

Hermann Weyl (1885–1955) described Galois’ final letter as: “if judged by the
novelty and profundity of ideas it contains, is perhaps the most substantial piece of
writing in the whole literature of mankind.” Thus was born the field of group theory!
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Arithmetic

Most people’s first exposure to mathematics comes in the form of counting.

At first, we only know about the natural numbers, N = {1, 2, 3, . . . }, and how to add
them.

Soon after, we learn how to subtract, and we learn about negative numbers as well.
At this point, we have the integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

Then, we learn how to divide numbers, and are introducted to fractions. This brings
us to the rational numbers, Q = { a

b
| a, b ∈ Z, b 6= 0}.

Though there are other numbers out there (irrational, complex, etc.), we don’t need
these to do basic arithmetic.

Key point

To do arithmetic, we need at least the rational numbers.
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Fields

Definition

A set F with addition and multiplication operations is a field if the following three
conditions hold:

F is an abelian group under addition.

F \ {0} is an abelian group under multiplication.

The distributive law holds: a(b + c) = ab + ac.

Examples

The following sets are fields: Q, R, C, Zp (prime p).

The following sets are not fields: N, Z, Zn (composite n).

Definition

If F and E are fields with F ⊂ E , we say that E is an extension of F .

For example, C is an extension of R, which is an extension of Q.

In this chapter, we will explore some more unusual fields and study their
automorphisms.
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An extension field of Q
Question

What is the smallest extension field F of Q that contains
√

2?

This field must contain all sums, differences, and quotients of numbers we can get
from

√
2. For example, it must include:

−
√

2, 1√
2
, 6 +

√
2,

(√
2 + 3

2

)3
,

√
2

16+
√
2
.

However, these can be simplified. For example, observe that(√
2 + 3

2

)3
= (
√

2)3 + 9
2
(
√

2)2 + 27
4

√
2 + 27

8
= 99

8
+ 35

4

√
2 .

In fact, all of these numbers can be written as a + b
√

2, for some a, b ∈ Q.

Key point

The smallest extension of Q that contains
√

2 is called “Q adjoin
√

2,” and denoted:

Q(
√

2) = {a + b
√

2 : a, b ∈ Q} =
{

p
q

+ r
s

√
2 : p, q, r , s ∈ Z, q, s 6= 0

}
.
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Q(i): Another extension field of Q

Question

What is the smallest extension field F of Q that contains i =
√
−1?

This field must contain

−i , 2
i
, 6 + i ,

(
i + 3

2

)3
, i

16+i
.

As before, we can write all of these as a + bi , where a, b ∈ Q. Thus, the field “Q
adjoin i” is

Q(i) = {a + bi : a, b ∈ Q} =

{
p

q
+

r

s
i : p, q, r , s ∈ Z, q, s 6= 0

}
.

Remarks

Q(i) is much smaller than C. For example, it does not contain
√

2.

Q(
√

2) is a subfield of R, but Q(i) is not.

Q(
√

2) contains all of the roots of f (x) = x2 − 2. It is called the splitting field
of f (x). Similarly, Q(i) is the splitting field of g(x) = x2 + 1.
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Q(
√

2, i): Another extension field of Q

Question

What is the smallest extension field F of Q that contains
√

2 and i =
√
−1?

We can do this in two steps:

(i) Adjoin the roots of the polynomial x2 − 2 to Q, yielding Q(
√

2);

(ii) Adjoin the roots of the polynomial x2 + 1 to Q(
√

2), yielding Q(
√

2)(i);

An element in Q(
√

2, i) := Q(
√

2)(i) has the form

=α + βi α, β ∈ Q(
√

2)

(a + b
√

2) + (c + d
√

2)i a, b, c, d ∈ Q
a + b

√
2 + ci + d

√
2i a, b, c, d ∈ Q

We say that {1,
√

2, i ,
√

2i} is a basis for the extension Q(
√

2, i) over Q. Thus,

Q(
√

2, i) = {a + b
√

2 + ci + d
√

2i : a, b, c, d ∈ Q}

In summary, Q(
√

2, i) is constructed by starting with Q, and adjoining all roots of
h(x) = (x2 − 2)(x2 + 1) = x4 − x2 − 2. It is the splitting field of h(x).
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Q(
√

2,
√

3): Another extension field of Q

Question

What is the smallest extension field F of Q that contains
√

2 and
√

3?

This time, our field is Q(
√

2,
√

3), constructed by starting with Q, and adjoining all
roots of the polynomial h(x) = (x2 − 2)(x2 − 3) = x4 − 5x2 + 6.

It is not difficult to show that {1,
√

2,
√

3,
√

6} is a basis for this field, i.e.,

Q(
√

2,
√

3) = {a + b
√

2 + c
√

3 + d
√

6 : a, b, c, d ∈ Q} .

Like with did with a group and its subgroups, we
can arrange the subfields of Q(

√
2,
√

3) in a lattice.

I’ve labeled each extension with the degree of the
polynomial whose roots I need to adjoin.

Just for fun: What group has a subgroup lattice
that looks like this?

Q(
√

2,
√

3)
2

vvvvvv 2

HHHHHH
2

Q(
√

2)

2 IIIIIII
Q(
√

6)

2

Q(
√

3)

2uuuuuuu

Q

M. Macauley (Clemson) Chapter 11: Galois theory Math 4120, Spring 2014 8 / 43

mailto:macaule@clemson.edu


Q(ζ, 3
√

2): Another extension field of Q
Question

What is the smallest extension field F of Q that contains all roots of g(x) = x3 − 2?

Let ζ = e2πi/3 = − 1
2

+
√
3

2
i . This is a 3rd root of unity;

the roots of x3 − 1 = (x − 1)(x2 + x + 1) are 1, ζ, ζ2.

Note that the roots of g(x) are

z1 =
3
√

2 , z2 = ζ
3
√

2 , z3 = ζ2
3
√

2 .

Thus, the field we seek is F = Q(z1, z2, z3).

ζ=e2πi/3

ζ2=e4πi/3

1

C

2π
3

I claim that F = Q(ζ, 3
√

2). Note that this field contains z1, z2, and z3. Conversely,
we can construct ζ and 3

√
2 from z1 and z2, using arithmetic.

A little algebra can show that

Q(ζ,
3
√

2) = {a + b
3
√

2 + c
3
√

4 + dζ + eζ
3
√

2 + f ζ
3
√

4 : a, b, c, d , e, f ∈ Q} .

Since ζ = − 1
2

+
√
3

2
i lies in Q(ζ, 3

√
2), so does 2(ζ + 1

2
) =
√

3i =
√
−3. Thus,

Q(ζ,
3
√

2) = Q(
√
−3,

3
√

2) = Q(
√

3i ,
3
√

2) .
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Subfields of Q(ζ, 3
√

2)

What are the subfields of

Q(ζ,
3
√

2) = {a + b
3
√

2 + c
3
√

4 + dζ + eζ
3
√

2 + f ζ
3
√

4 : a, b, c, d , e, f ∈ Q} ?

Note that (ζ2)2 = ζ4 = ζ, and so Q(ζ2) = Q(ζ) = {a + bζ : a, b ∈ Q}.

Similarly, ( 3
√

4)2 = 2 3
√

2, and so Q( 3
√

4) = Q( 3
√

2) = {a + b 3
√

2 + c 3
√

4 : a, b, c ∈ Q}.

There are two more subfields. As we did before, we can arrange them in a lattice:

Q(ζ, 3
√

2)

3

����������
2

2
KKKKK 2

UUUUUUUUUUU

Q( 3
√

2)

3

Q(ζ 3
√

2)

3

����������
Q(ζ2 3

√
2)

3

rrrrrrrrrrrrrrrrr

Q(ζ)

2 JJJJJJ

Q

Look familiar?

D3
2

yyyy

3
3

4444444444

3

HHHHHHHHHHHHH

〈r〉

3

2222222222

〈f 〉
2

〈rf 〉
2

xxxx
〈r 2f 〉

2kkkkkkkkkkk

〈e〉

Compare this to the
subgroup lattice of D3.
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Field automorphisms

Recall that an automorphism of a group G was an isomorphism φ : G → G .

Definition

Let F be a field. A field automorphism of F is a bijection φ : F → F such that for all
a, b ∈ F ,

φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b) .

In other words, φ must preserve the structure of the field.

For example, let F = Q(
√

2). Verify (HW) that the function

φ : Q(
√

2) −→ Q(
√

2) , φ : a + b
√

2 7−→ a− b
√

2 .

is an automorphism. That is, show that

φ((a + b
√

2) + (c + d
√

2)) = · · · = φ(a + b
√

2) + φ(c + d
√

2)

φ((a + b
√

2)(c + d
√

2)) = · · · = φ(a + b
√

2)φ(c + d
√

2).

What other field automorphisms of Q(
√

2) are there?
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A defining property of field automorphisms

Field automorphisms are central to Galois theory! We’ll see why shortly.

Proposition

If φ is an automorphism of an extension field F of Q, then

φ(q) = q for all q ∈ Q.

Proof

Suppose that φ(1) = q. Clearly, q 6= 0. (Why?) Observe that

q = φ(1) = φ(1 · 1) = φ(1)φ(1) = q2 .

Similarly,
q = φ(1) = φ(1 · 1 · 1) = φ(1)φ(1)φ(1) = q3 .

And so on. It follows that qn = q for every n ≥ 1. Thus, q = 1.

Corollary
√

2 is irrational.
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The Galois group of a field extension

The set of all automorphisms of a field form a group under composition.

Definition

Let F be an extension field of Q. The Galois group of F is the group of
automorphisms of F , denoted Gal(F ).

Here are some examples (without proof):

The Galois group of Q(
√

2) is C2:

Gal(Q(
√

2)) = 〈f 〉 ∼= C2 , where f :
√

2 7−→ −
√

2

An automorphism of F = Q(
√

2, i) is completely determined by where it sends√
2 and i . There are four possibilities: the identity map e, and{

h(
√

2) = −
√

2
h(i) = i

{
v(
√

2) =
√

2
v(i) = −i

{
r(
√

2) = −
√

2
r(i) = −i

Thus, the Galois group of F is Gal(Q(
√

2, i)) = 〈h, v〉 ∼= V4.

What do you think the Galois group of Q(ζ, 3
√

2) is?
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Summary so far

Roughly speaking, a field is a group under both addition and multiplication (if we
exclude 0), with the distributive law connecting these two operations.

We are mostly interested in the field Q, and certain extension fields: F ⊇ Q. Some of
the extension fields we’ve encountered:

Q(
√

2), Q(i), Q(
√

2, i), Q(
√

2,
√

3), Q(ζ,
3
√

2).

An automorphism of a field F ⊃ Q is a structure-preserving map that fixes Q.

The set of all automorphisms of F ⊇ Q forms a group, called the Galois group of F ,
denoted Gal(F ).

There is an intriguing but mysterious connection between subfields of F and
subgroups of Gal(F ). This is at the heart of Galois theory!

Question

How does this all relate to solving polynomials with radicals?
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Polynomials

Definition

Let x be an unknown variable. A polynomial is a function

f (x) = anxn + an−1xn−1 + · · ·+ a2x2 + a1x + a0 .

The highest non-zero power of n is called the degree of f .

We can assume that all of our coefficients ai lie in a field F .

For example, if each ai ∈ Z (not a field), we could alternatively say that ai ∈ Q.

Let F [x ] denote the set of polynomials with coefficients in F . We call this the set of
polynomials over F .

Remark

Even though Z is not a field, we can still write Z[x ] to be the set of polynomials with
integer coefficients. Most polynomials we encounter have integer coeffients anyways.
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Radicals

The roots of low-degree polynomials can be expressed using arithmetic and radicals.

For example, the roots of the polynomial f (x) = 5x4 − 18x2 − 27 are

x1,2 = ±

√
6
√

6 + 9

5
, x3,4 = ±

√
9− 6

√
6

5
.

Remark

The operations of arithmetic, and radicals, are really the “only way” we have to write
down generic complex numbers.

Thus, if there is some number that cannot be expressed using radicals, we have no
way to express it, unless we invent a special symbol for it (e.g., π or e).

Even weirder, since a computer program is just a string of 0s and 1s, there are only
countably infinite many possible programs.

Since R is an uncountable set, there are numbers (in fact, “almost all” numbers)
that can never be expressed algorithmically by a computer program! Such numbers
are called “uncomputable.”
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Algebraic numbers

Definition

A complex number is algebraic (over Q) if it is the root of some polynomial in Z[x ].
The set A of all algebraic numbers forms a field (this is not immediately obvious).

A number that is not algebraic over Q (e.g., π, e, ϕ) is called transcendental.

Every number that can be expressed from the natural numbers using arithmetic and
radicals is algebraic. For example, consider

x = 5
√

1 +
√
−3 ⇐⇒ x5 = 1 +

√
−3

⇐⇒ x5 − 1 =
√
−3

⇐⇒ (x5 − 1)2 = −3
⇐⇒ x10 − 2x5 + 4 = 0 .

Question

Can all algebraic numbers be expressed using radicals?

This question was unsolved until the early 1800s.
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Hasse diagrams

The relationship between the natural numbers N, and the fields Q, R, A, and C, is
shown in the following Hasse diagrams.

C complex numbers a + bi , for a, b ∈ R

R real numbers

Q rational numbers, a
b for a, b ∈ Z (b 6= 0)

C

algebraic closure

A
???

||||||||

solving polynomial equations???

using radicals AAAAAAAA

Q

operations of arithmetic

N
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Some basic facts about the complex numbers

Definition

A field F is algebraically closed if for any polynomial f (x) ∈ F [x ], all of the roots of
f (x) lie in F .

Non-examples

Q is not algebraically closed because f (x) = x2 − 2 ∈ Q[x ] has a root
√

2 6∈ Q.

R is not algebraically closed because f (x) = x2 + 1 ∈ R[x ] has a root
√
−1 6∈ R.

Fundamental theorem of algebra

The field C is algebraically closed.

Thus, every polynomial f (x) ∈ Z[x ] completely factors, or splits over C:

f (x) = (x − r1)(x − r2) · · · (x − rn) , ri ∈ C .

Conversely, if F is not algebraically closed, then there are polynomials f (x) ∈ F [x ]
that do not split into linear factors over F .

M. Macauley (Clemson) Chapter 11: Galois theory Math 4120, Spring 2014 19 / 43

mailto:macaule@clemson.edu


Complex conjugates

Recall that complex roots of f (x) ∈ C[x ] come
in conjugate pairs: If r = a + bi is a root, then
so is r̄ = a− bi .

For example, here are the roots of some polyno-
mials (degrees 2 through 5) plotted in the com-
plex plane. All of them exhibit symmetry across
the x-axis.

•
1 + i

•
1 − i

f (x) = x2 − 2x + 2

Roots: 1 ± i

x

y

•
2 + 1

2
i

•
2 − 1

2
i

•
− 1

3

f (x) = 12x3 − 44x2 + 35x + 17

Roots: − 1
3
, 2± 1

2
i

x

y

•

√
2

2
+

√
2

2
i

•√
2

2
−
√

2
2

i

•
−
√

2
2

+

√
2

2
i

•
−
√

2
2
−
√

2
2

i

f (x) = x4 + 1

Roots: ±
√

2
2
±
√

2
2

x

y

•
−2

•

1
2

+ i

•
1
2
− i

•

3
2

•
3

f (x) = 8x5−28x4−6x3+83x2−117x+90

Roots: −2, 3
2
, 3, 1

2
i± i

x

y
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Irreducibility

Definition

A polynomial f (x) ∈ F [x ] is reducible over F if we can factor it as f (x) = g(x)h(x)
for some g(x), h(x) ∈ F [x ] of strictly lower degree. If f (x) is not reducible, we say it
is irreducible over F .

Examples

x2 − x − 6 = (x + 2)(x − 3) is reducible over Q.

x4 + 5x2 + 4 = (x2 + 1)(x2 + 4) is reducible over Q, but it has no roots in Q.

x3 − 2 is irreducible over Q. If we could factor it, then one of the factors would
have degree 1. But x3 − 2 has no roots in Q.

Facts

If deg(f ) > 1 and has a root in F , then it is reducible over F .

Every polynomial in Z[x ] is reducible over C.

If f (x) ∈ F [x ] is a degree-2 or 3 polynomial, then f (x) is reducible over F if and
only if f (x) has a root in F .
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Eisenstein’s criterion for irreducibility

Lemma

Let f ∈ Z[x ] be irrreducible. Then f is also irreducible over Q.

Equivalently, if f ∈ Z[x ] factors over Q, then it factors over Z.

Theorem (Eisenstein’s criterion)

A polynomial f (x) = anxn + an−1xn−1 + · · · a1x + a0 ∈ Z[x ] is irreducible if for some
prime p, the following all hold:

1. p - an;

2. p | ak for k = 0, . . . , n − 1;

3. p2 - a0.

For example, Eisenstein’s criterion tells us that x10 + 4x7 + 18x + 14 is irreducible.

Remark

If Eisenstein’s criterion fails for all primes p, that does not necessarily imply that f is
reducible. For example, f (x) = x2 + x + 1 is irreducible over Q, but Eisenstein
cannot detect this.
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Extension fields as vector spaces
Recall that a vector space over Q is a set of vectors V such that

If u, v ∈ V , then u + v ∈ V (closed under addition)

If v ∈ V , then cv ∈ V for all c ∈ Q (closed under scalar multiplication).

The field Q(
√

2) is a 2-dimensional vector space over Q:

Q(
√

2) = {a + b
√

2 : a, b ∈ Q}.

This is why we say that {1,
√

2} is a basis for Q(
√

2) over Q.

Notice that the other field extensions we’ve seen are also vector spaces over Q:

Q(
√

2, i) = {a + b
√

2 + ci + d
√

2i : a, b, c, d ∈ Q},

Q(ζ,
3
√

2) = {a + b
3
√

2 + c
3
√

4 + dζ + eζ
3
√

2 + f ζ
3
√

4 : a, b, c, d , e, f ∈ Q} .

As Q-vector spaces, Q(
√

2, i) has dimension 4, and Q(ζ, 3
√

2) has dimension 6.

Definition

If F ⊆ E are fields, then the degree of the extension, denoted [E : F ], is the
dimension of E as a vector space over F .

Equivalently, this is the number of terms in the expression for a general element for E
using coefficients from F .
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Minimial polynomials

Definition

Let r 6∈ F be algebraic. The minimal polynomial of r over F is the irreducible
polynomial in F [x ] of which r is a root. It is unique up to scalar multiplication.

Examples
√

2 has minimal polynomial x2 − 2 over Q, and [Q(
√

2) : Q] = 2.

i =
√
−1 has minimal polynomial x2 + 1 over Q, and [Q(i) : Q] = 2.

ζ = e2πi/3 has minimal polynomial x2 + x + 1 over Q, and [Q(ζ) : Q] = 2.
3
√

2 has minimal polynomial x3 − 2 over Q, and [Q( 3
√

2) : Q] = 3.

What are the minimal polynomials of the following numbers over Q?

−
√

2 , −i , ζ2 , ζ
3
√

2 , ζ2
3
√

2 .

Degree theorem

The degree of the extension Q(r) is the degree of the minimal polynomial of r .
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The Galois group of a polynomial

Definition

Let f ∈ Z[x ] be a polynomial, with roots r1, . . . , rn. The splitting field of f is the field

Q(r1, . . . , rn) .

The splitting field F of f (x) has several equivalent characterizations:

the smallest field that contains all of the roots of f (x);

the smallest field in which f (x) splits into linear factors:

f (x) = (x − r1)(x − r2) · · · (x − rn) ∈ F [x ] .

Recall that the Galois group of an extension F ⊇ Q is the group of automorphisms of
F , denoted Gal(F ).

Definition

The Galois group of a polynomial f (x) is the Galois group of its splitting field,
denoted Gal(f (x)).
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A few examples of Galois groups

The polynomial x2 − 2 splits in Q(
√

2), so

Gal(x2 − 2) = Gal(Q(
√

2)) ∼= C2 .

The polynomial x2 + 1 splits in Q(i), so

Gal(x2 + 1) = Gal(Q(i)) ∼= C2 .

The polynomial x2 + x + 1 splits in Q(ζ), where ζ = e2πi/3, so

Gal(x2 + x + 1) = Gal(Q(ζ)) ∼= C2 .

The polynomial x3 − 1 = (x − 1)(x2 + x + 1) also splits in Q(ζ), so

Gal(x3 − 1) = Gal(Q(ζ)) ∼= C2 .

The polynomial x4 − x2 − 2 = (x2 − 2)(x2 + 1) splits in Q(
√

2, i), so

Gal(x4 − x2 − 2) = Gal(Q(
√

2, i)) ∼= V4 .

The polynomial x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) splits in Q(
√

2,
√

3), so

Gal(x4 − 5x2 + 6) = Gal(Q(
√

2,
√

3)) ∼= V4 .

The polynomial x3 − 2 splits in Q(ζ, 3
√

2), so

Gal(x3 − 2) = Gal(Q(ζ,
3
√

2)) ∼= D3 ???

M. Macauley (Clemson) Chapter 11: Galois theory Math 4120, Spring 2014 26 / 43

mailto:macaule@clemson.edu


The tower law of field extensions

Recall that if we had a chain of subgroups K ≤ H ≤ G , then the index satisfies a
tower law: [G : K ] = [G : H][H : K ].

Not surprisingly, the degree of field extensions obeys a similar tower law:

Theorem (Tower law)

For any chain of field extensions, F ⊂ E ⊂ K ,

[K : F ] = [K : E ][E : F ] .

We have already observed this in our subfield lattices:

[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)︸ ︷︷ ︸
min. poly: x2−3

][ Q(
√

2) : Q︸ ︷︷ ︸
min. poly: x2−2

] = 2 · 2 = 4 .

Here is another example:

[Q(ζ,
3
√

2) : Q] = [Q(ζ,
3
√

2) : Q(
3
√

2)︸ ︷︷ ︸
min. poly: x2+x+1

][ Q(
3
√

2) : Q︸ ︷︷ ︸
min. poly: x3−2

] = 2 · 3 = 6 .
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Primitive elements
Primitive element theorem

If F is an extension of Q with [F : Q] <∞, then F has a primitive element: some
α 6∈ Q for which F = Q(α).

How do we find a primitive element α of F = Q(ζ, 3
√

2) = Q(i
√

3, 3
√

2)?

Let’s try α = i
√

3 3
√

2 ∈ F . Clearly, [Q(α) : Q] ≤ 6. Observe that

α2 = −3 3
√
4, α3 = −6i

√
3, α4 = −18 3

√
2, α5 = 18i 3

√
4
√

3, α6 = −108.

Thus, α is a root of x6 + 108. The following are equivalent (why?):

(i) α is a primitive element of F ;

(ii) [Q(α) : Q] = 6;

(iii) the minimal polynomial m(x) of α has degree 6;

(iv) x6 + 108 is irreducible (and hence must be m(x)).

In fact, [Q(α) :Q] = 6 holds because both 2 and 3 divide [Q(α) :Q]:

[Q(α) :Q] = [Q(α) :Q(i
√

3)] [Q(i
√
3) :Q]︸ ︷︷ ︸

=2

, [Q(α) :Q] = [Q(α) :Q(
3
√

2)] [Q(
3
√

2) :Q]︸ ︷︷ ︸
=3

.
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An example: The Galois group of x4 − 5x2 + 6

The polynomial f (x) = (x2− 2)(x2− 3) = x4− 5x2 + 6 has splitting field Q(
√

2,
√

3).

We already know that its Galois group should be V4. Let’s compute it explicitly; this
will help us understand it better.

We need to determine all automorphisms φ of Q(
√

2,
√

3). We know:

φ is determined by where it sends the basis elements {1,
√

2,
√

3,
√

6}.
φ must fix 1.

If we know where φ sends two of {
√

2,
√

3,
√

6}, then we know where it sends
the third, because

φ(
√

6) = φ(
√

2
√

3) = φ(
√

2)φ(
√

3) .

In addition to the identity automorphism e, we have{
φ2(
√

2) = −
√

2

φ2(
√

3) =
√

3

{
φ3(
√

2) =
√

2

φ3(
√

3) = −
√

3

{
φ4(
√

2) = −
√

2

φ4(
√

3) = −
√

3

Question

What goes wrong if we try to make φ(
√

2) =
√

3? (Try it!)
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An example: The Galois group of x4 − 5x2 + 6

There are 4 automorphisms of F = Q(
√

2,
√

3), the splitting field of x4 − 5x2 + 6:

e : a + b
√

2 + c
√

3 + d
√

6 7−→ a + b
√

2 + c
√

3 + d
√

6

φ2 : a + b
√

2 + c
√

3 + d
√

6 7−→ a− b
√

2 + c
√

3− d
√

6

φ3 : a + b
√

2 + c
√

3 + d
√

6 7−→ a + b
√

2− c
√

3− d
√

6

φ4 : a + b
√

2 + c
√

3 + d
√

6 7−→ a− b
√

2− c
√

3 + d
√

6

They form the Galois group of x4 − 5x2 + 6. The multiplication table and Cayley
diagram are shown below.

e

φ2

φ3

φ4

e φ2 φ3 φ4

e

φ2

φ3

φ4

φ2

e

φ4

φ3

φ3

φ4

e

φ2

φ4

φ3

φ2

e

e

φ3

φ2

φ4

•• ••
x

y

−
√

2−
√

3
√

2
√

3

φ2

φ3

Exercise

Show that α =
√

2 +
√

3 is a primitive element of F , i.e., Q(α) = Q(
√

2,
√

3).
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The Galois group acts on the roots

Theorem

If f ∈ Z[x ] is a polynomial with a root in a field extension F of Q, then any
automorphism of F permutes the roots of f .

Said differently, we have a group action of Gal(f (x)) on the set S = {r1, . . . , rn} of
roots of f (x).

That is, we have a homomorphism

ψ : Gal(f (x)) −→ Perm({r1, . . . , rn}) .

If φ ∈ Gal(f (x)), then ψ(φ) is a permutation of the roots of f (x).

This permutation is what results by “pressing the φ-button” – it permutes the roots
of f (x) via the automorphism φ of the splitting field of f (x).

Corollary

If the degree of f ∈ Z[x ] is n, then the Galois group of f is a subgroup of Sn.
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The Galois group acts on the roots

The next results says that “Q can’t tell apart the roots of an irreducible polynomial.”

The “One orbit theorem”

Let r1 and r2 be roots of an irreducible polynomial over Q. Then

(a) There is an isomorphism φ : Q(r1) −→ Q(r2) that fixes Q and with φ(r1) = r2.

(b) This remains true when Q is replaced with any extension field F , where
Q ⊂ F ⊂ C.

Corollary

If f (x) is irreducible over Q, then for any two roots r1 and r2 of f (x), the Galois
group Gal(f (x)) contains an automorphism φ : r1 7−→ r2.

In other words, if f (x) is irreducible, then the action of Gal(f (x)) on the set
S = {r1, . . . , rn} of roots has only one orbit.
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Normal field extensions

Definition

An extension field E of F is normal if it is the splitting field of some polynomial f (x).

If E is a normal extension over F , then every irreducible polynomial over F [x ] that
has a root in E splits over F .

Thus, if you can find an irreducible polynomial that has one root, but not all of its
roots in E , then E is not a normal extension.

Normal extension theorem

The degree of a normal extension is the order of its Galois group.

Corollary

The order of the Galois group of a polynomial f (x) is the degree of the extension of
its splitting field over Q.
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Normal field extensions: Examples
Consider Q(ζ, 3

√
2) = Q(α), the splitting

field of f (x) = x3 − 2.

It is also the splitting field of
m(x) = x6 + 108, the minimal polynomial
of α = 3

√
2
√
−3.

Let’s see which of its intermediate
subfields are normal extensions of Q.

Q(ζ, 3
√

2)

3

����������
2

2
KKKKK 2

UUUUUUUUUUU

Q( 3
√

2)

3

Q(ζ 3
√

2)

3

����������
Q(ζ2 3

√
2)

3

rrrrrrrrrrrrrrrrr

Q(ζ)

2 JJJJJJ

Q
Q: Trivially normal.

Q(ζ): Splitting field of x2 + x + 1; roots are ζ, ζ2 ∈ Q(ζ). Normal.

Q( 3
√

2): Contains only one root of x3 − 2, not the other two. Not normal.

Q(ζ 3
√

2): Contains only one root of x3 − 2, not the other two. Not normal.

Q(ζ2 3
√

2): Contains only one root of x3 − 2, not the other two. Not normal.

Q(ζ, 3
√

2): Splitting field of x3 − 2. Normal.

By the normal extension theorem,

|Gal(Q(ζ))| = [Q(ζ) : Q] = 2 , |Gal(Q(ζ,
3
√

2))| = [Q(ζ,
3
√

2) : Q] = 6 .

Moreover, you can check that |Gal(Q( 3
√

2))| = 1 < [Q( 3
√

2) : Q] = 3.
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The Galois group of x3 − 2
We can now conclusively determine the Galois group of x3 − 2.

By definition, the Galois group of a polynomial is the Galois group of its splitting
field, so Gal(x3 − 2) = Gal(Q(ζ, 3

√
2)).

By the normal extension theorem, the order of the Galois group of f (x) is the degree
of the extension of its splitting field:

|Gal(Q(ζ,
3
√

2))| = [Q(ζ,
3
√

2) : Q] = 6 .

Since the Galois group acts on the roots of x3 − 2, it must be a subgroup of S3
∼= D3.

There is only one subgroup of S3 of order 6, so Gal(x3 − 2) ∼= S3. Here is the action
diagram of Gal(x3 − 2) acting on the set S = {r1, r2, r3} of roots of x3 − 2:

{
r : 3
√

2 7−→ ζ 3
√

2
r : ζ 7−→ ζ

{
f : 3
√

2 7−→ 3
√

2
f : ζ 7−→ ζ2

•
r1

•
r2

•
r3

x

y

f

r
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Paris, May 31, 1832

The night before a duel that Évariste Galois
knew he would lose, the 20-year-old stayed up
late preparing his mathematical findings in a
letter to Auguste Chevalier.

Hermann Weyl (1885–1955) said “This letter,
if judged by the novelty and profundity of
ideas it contains, is perhaps the most
substantial piece of writing in the whole
literature of mankind.”

Fundamental theorem of Galois theory

Given f ∈ Z[x ], let F be the splitting field of f , and G the Galois group. Then the
following hold:

(a) The subgroup lattice of G is identical to the subfield lattice of F , but
upside-down. Moreover, H C G if and only if the corresponding subfield is a
normal extension of Q.

(b) Given an intermediate field Q ⊂ K ⊂ F , the corresponding subgroup H < G
contains precisely those automorphisms that fix K .
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An example: the Galois correspondence for f (x) = x3 − 2

Q(ζ, 3
√

2)

3

����������
2

2
KKKKK 2

UUUUUUUUUUU

Q( 3
√

2)

3

Q(ζ 3
√

2)

3

����������
Q(ζ2 3

√
2)

3

rrrrrrrrrrrrrrrrr

Q(ζ)

2 JJJJJJ

Q
Subfield lattice of Q(ζ, 3

√
2)

D3
2

yyyy

3
3

4444444444

3

HHHHHHHHHHHHH

〈r〉

3

2222222222

〈f 〉
2

〈rf 〉
2

xxxx
〈r 2f 〉

2kkkkkkkkkkk

〈e〉
Subgroup lattice of Gal(Q(ζ, 3

√
2)) ∼= D3.

The automorphisms that fix Q are precisely those in D3.

The automorphisms that fix Q(ζ) are precisely those in 〈r〉.
The automorphisms that fix Q( 3

√
2) are precisely those in 〈f 〉.

The automorphisms that fix Q(ζ 3
√

2) are precisely those in 〈rf 〉.
The automorphisms that fix Q(ζ2 3

√
2) are precisely those in 〈r 2f 〉.

The automorphisms that fix Q(ζ, 3
√

2) are precisely those in 〈e〉.

The normal field extensions of Q are: Q, Q(ζ), and Q(ζ, 3
√

2).

The normal subgroups of D3 are: D3, 〈r〉 and 〈e〉.
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Solvability

Definition

A group G is solvable if it has a chain of subgroups:

{e} = N0 C N1 C N2 C · · ·C Nk−1 C Nk = G .

such that each quotient Ni/Ni−1 is abelian.

Note: Each subgroup Ni need not be normal in G , just in Ni+1.

Examples

D4 = 〈r , f 〉 is solvable. There are many possible chains:

〈e〉C 〈f 〉C 〈r 2, f 〉C D4 , 〈e〉C 〈r〉C D4 , 〈e〉C 〈r 2〉C D4.

Any abelian group A is solvable: take N0 = {e} and N1 = A.

For n ≥ 5, the group An is simple and non-abelian. Thus, the only chain of
normal subgroups is

N0 = {e}C An = N1 .

Since N1/N0
∼= An is non-abelian, An is not solvable for n ≥ 5.
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Some more solvable groups

D3
∼= S3 is solvable: {e}C 〈r〉C D3.

{e}

〈rf 〉 〈r2f 〉〈f 〉

〈r〉

D3 = 〈r, f 〉

〈r〉
{e}
∼= C3, abelian

D3
〈r〉
∼= C2, abelian

{e}

C2

C3 C3 C3 C3

V4V4 V4

C6 C6 C6 C6

Q4

G

Q4
C2
∼=V4,

abelian

C2
{e}
∼= C2,

abelian

G
Q4
∼= C3, abelian

The group above at right has order 24, and is the smallest solvable group that
requires a three-step chain of normal subgroups.
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The hunt for an unsolvable polynomial

The following lemma follows from the Correspondence Theorem. (Why?)

Lemma

If N C G , then G is solvable if and only if both N and G/N are solvable.

Corollary

Sn is not solvable for all n ≥ 5. (Since An C Sn is not solvable).

Galois’ theorem

A field extension E ⊇ Q contains only elements expressible by radicals if and only if
its Galois group is solvable.

Corollary

If f (x) is solvable by radicals, then it has a solvable Galois group.

Thus, any polynomial with Galois group S5 is not solvable by radicals!
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An unsolvable quintic!

To find a polynomial not solvable by radicals, we’ll look for a polynomial f (x) with
Gal(f (x)) ∼= S5.

We’ll restrict our search to degree-5 polynomials, because Gal(f (x)) ≤ S5 for any
degree-5 polynomial f (x).

Key observation

Recall that for any 5-cycle σ and 2-cycle (=transposition) τ ,

S5 = 〈σ, τ〉 .

Moreover, the only elements in S5 of order 5 are 5-cycles, e.g., σ = (a b c d e).

Let f (x) = x5 + 10x4 − 2. It is irreducible by Eisenstein’s criterion (use p = 2). Let
F = Q(r1, . . . , r5) be its splitting field.

Basic calculus tells us that f exactly has 3 real roots. Let r1, r2 = a± bi be the
complex roots, and r3, r4, and r5 be the real roots.

Since f has distinct complex conjugate roots, complex conjugation is an
automorphism τ : F −→ F that transposes r1 with r2, and fixes the three real roots.
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An unsolvable quintic!

We just found our transposition τ = (r1 r2). All that’s left is to find an element (i.e.,
an automorphism) σ of order 5.

Take any root ri of f (x). Since f (x) is irreducible, it is the minimal polynomial of ri .
By the Degree Theorem,

[Q(ri ) : Q] = deg(minimum polynomial of ri ) = deg f (x) = 5 .

The splitting field of f (x) is F = Q(r1, . . . , r5), and by the normal extension theorem,
the degree of this extension over Q is the order of the Galois group Gal(f (x)).

Applying the tower law to this yields

|Gal(f (x))| = [Q(r1, r2, r3, r4, r5) : Q] = [Q(r1, r2, r3, r4, r5) : Q(r1)] [Q(r1) : Q]︸ ︷︷ ︸
=5

Thus, |Gal(f (x))| is a multiple of 5, so Cauchy’s theorem guarantees that G has an
element σ of order 5.

Since Gal(f (x)) has a 2-cycle τ and a 5-cycle σ, it must be all of S5.

Gal(f (x)) is an unsolvable group, so f (x) = x5 + 10x4 − 2 is unsolvable by radicals!
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Summary of Galois’ work

Let f (x) be a degree-n polynomial in Z[x ] (or Q[x ]). The roots of f (x) lie in some
splitting field F ⊇ Q.

The Galois group of f (x) is the automorphism group of F . Every such automorphism
fixes Q and permutes the roots of f (x).

This is a group action of Gal(f (x)) on the set of n roots! Thus, Gal(f (x)) ≤ Sn.

There is a 1–1 correspondence between subfields of F and subgroups of Gal(f (x)).

A polynomial is solvable by radicals iff its Galois group is a solvable group.

The symmetric group S5 is not a solvable group.

Since S5 = 〈τ, σ〉 for a 2-cycle τ and 5-cycle σ, all we need to do is find a degree-5
polynomial whose Galois group contains a 2-cycle and an element of order 5.

If f (x) is an irreducible degree-5 polynomial with 3 real roots, then complex
conjugation is an automorphism that transposes the 2 complex roots. Moreover,
Cauchy’s theorem tells us that Gal(f (x)) must have an element of order 5.

Thus, f (x) = x5 + 10x4 − 2 is not solvable by radicals!
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