Math 4120/6120: Abstract Algebra (Spring 2014) Midterm 1

NAME:

Instructions: Answer each of the following questions completely. If something is unclear, or if you have any questions, then please ask. Good luck!

- 1. (12 points) Finish the following formal mathematical definitions.
 - (a) A set G is a group if there is a binary operation \ast on G such that the following 3 properties hold: . . .

(b) A subgroup $H \leq G$ is normal if ...

- (c) A group G is *cyclic* if ...
- (d) If $H \leq G$, then the left coset xH is

$$xH = \left\{ \qquad \qquad : \qquad \qquad \right\}.$$

2. (6 points) Draw the subgroup lattice of the group \mathbb{Z}_{12} . Circle every subgroup that is normal in \mathbb{Z}_{12} .

3. (12 points) The *center* of a group G is the set

$$\begin{split} Z(G) &= \{z \in G \mid gz = zg, \; \forall g \in G\} \\ &= \{z \in G \mid gzg^{-1} = z, \; \forall g \in G\} \,. \end{split}$$

(a) Prove that Z(G) is a subgroup of G.

(b) Prove that Z(G) is a normal subgroup of G.

- 4. (10 points) Let G be a group and $H = \langle b, c \rangle$ a subgroup of G.
 - (a) If $a \in H$, then what is $\langle a, b, c \rangle$?
 - (b) If $a \notin H$ and [G:H] = 2, then what is $\langle a, b, c \rangle$?
 - (c) If $a \notin H$, and |G| = 48 and |H| = 6, then what do you know about the order of $\langle a, b, c \rangle$? Be as specific as possible?

- 5. (5 points) If a is the permutation that exchanges the numbers 1 and 2, but leaves all other numbers fixed, then what is $[S_n : \langle a \rangle]$?
- 6. (5 points) What subgroup of \mathbb{Z} is generated by 2 and 5?
- 7. (5 points) What is the inverse of the permutation (1 2) (2 3) (4 5)? Write your answer as a product of *disjoint* cycles.

8. (5 points) Find all left cosets of the subgroup $H = \langle (1 \ 2) \rangle$ of S_3 . Then find all right cosets. Is $H \triangleleft S_3$?

- 9. (16 points) Give an example of each of the following. No justification necessary.
 - (a) An abelian group that is not cyclic.
 - (b) A minimal generating set for S_5 . (Use cycle notation.)
 - (c) A chain of subgroups $K \triangleleft H \triangleleft G$ such that $K \not \triangleleft G$. (Describe the subgroups by *specific generator(s)*, not just what group they are isomorphic to.)
 - (d) A group G of order 16 such that $g^2 = e$ for all $g \in G$.
 - (e) A group presentation for $C_2 \times C_3$.
 - (f) A nonabelian group G such that every proper subgroup of G is normal.
 - (g) A nontrivial group G such that $Z(G) = \{e\}$.
 - (h) A group G such that $\{e\} \leq Z(G) \leq G$.

10. (6 points) Prove that every element in a group G has a *unique* inverse.

11. (6 points) Prove that if $x \in H$, then xH = H.

- 12. (12 points) Let $K \leq H \leq G$ be a chain of subgroups.
 - (a) Prove that if $K \triangleleft G$, then $K \triangleleft H$.

(b) Suppose $|G| < \infty$. If [G : H] = a, and [H : K] = b, then what is [G : K]? Either provide a proof, OR (recommended!) provide a visual diagram that makes the answer "obvious."