1. Let X_1, X_2 be vector spaces over a field K. Show that $\dim(X_1 \times X_2) = \dim X_1 + \dim X_2$.

2. Let Y be a subspace of a vector space X. Show that $Y \times X/Y$ is isomorphic to X.

3. Let K be a finite field. The characteristic of K, denoted $\text{char} K$, is the smallest positive integer n for which $n1 := 1 + 1 + \cdots + 1 = 0$.

 (a) Prove that the characteristic of K is prime.
 (b) Show that K is a vector space over \mathbb{Z}_p, where $p = \text{char} K$.
 (c) Show that the order $|K|$ of K (the number of elements it contains) is a prime power.
 (d) Show that if K and L are finite fields with $K \subset L$ and $|K| = p^m$ and $|L| = p^n$, then m divides n.

4. Let X be a vector space over a field K and let X' be the the set of linear functions from X to K, also known as the dual space of X.

 (a) Let v_1, \ldots, v_n be a basis for X. For each i, show there exists a unique linear map $f_i: X \to K$ such that $f_i(v_i) = 1$ and $f_i(v_j) = 0$ for $j \neq i$.
 (b) Show that f_1, \ldots, f_n is a basis for X' (called the dual basis of v_1, \ldots, v_n).
 (c) Consider the basis $v_1 = (1, -1, 3)$, $v_2 = (0, 1, -1)$, and $v_3 = (0, 3, -2)$ of $X = \mathbb{R}^3$. Find a formula for each element of the dual basis.
 (d) Express the linear map $f \in X'$, where $f(x, y, z) = 2x - y + 3z$ as a linear combination of the dual basis, f_1, f_2, f_3.

5. Let S be a subset of X. The annihilator of S is the set

$$S^\perp = \{ \ell \in X' \mid \ell(s) = 0 \text{ for all } s \in S \} .$$

 (a) Show that if S is a subspace of X, then S^\perp is a subspace of X'.
 (b) Let Y be the smallest subspace of X that contains S. Show that $S^\perp = Y^\perp$.