

Read: Algebraic and Discrete Mathematical Methods for Modern Biology, Chapter 13: *RNA Secondary Structures: Combinatorial Models and Folding Algorithms*, by Q. He, M. Macauley, and R. Davies. Pages 321–345.

1. Consider the following fold of the RNA sequence GGGACCUUCCCCCCAAGGGGGGGG:

- (i) Draw the corresponding arc diagram.
- (ii) Write out this secondary structure in point-bracket notation.
- (iii) Draw the corresponding Motskin path.
- 2. Consider the following fold of the same RNA sequence from the previous problem:

- (i) Draw the corresponding arc diagram. What is the smallest k for which this is k-noncrossing.
- (ii) What if the first G bonds with the C "directly below" it (vertex 17). Does this change the k from the previous part?
- (iii) Draw a picture of a folded RNA strand (like the one above) that is 4-noncrossing but not 3-noncrossing.
- 3. Consider the RNA sequence $\mathbf{b} = \text{GCUGCAUCUU}$. Find all possible ways that it can fold into a secondary structure S, without leaving any "allowed" unpaired bases. Draw the arc diagram and a "realistic sketch" of the folded RNA strand. Compute the energy score $E(\mathbf{b}, S)$ of each.

4. Use dynamic programming to fill out the remaining table to find the optimal fold of the RNA sequence $\mathbf{b} = \text{GCUGCAUCUU}$. Then, do the trace-back step to recover a structure that achieves this maximum energy score.

	G	\mathbf{C}	U	G	С	А	U	\mathbf{C}	U	U
G	0	0	0	0						
С		0	0	0	0					
U			0	0	0	0				
U G C A				0	0	0	0			
\mathbf{C}					0	0	0	0		
А						0	0	0	0	
U							0	0	0	0
\mathbf{C}								0	0	0
U									0	0
U										0