
Math 4500 worksheet: Reverse engineering of polynomial dynamical systems

Goal. Find all models F = (f1, . . . , fn) : that fit the partial data:

Input states: s1, . . . , sm ∈ Fn

Output states: t1, . . . , tm ∈ Fn with F (si) = ti.

Here, each fi : Fn
2 → F2 can be assumed to be a Boolean polynomial, and updating each of these

functions synchronously yields the finite dynamical systems (FDS) map F : Fn
2 → Fn

2 . That is, the
equation F (si) = ti means

F (si) = (f1(si), f2(si), . . . , fn(si)) = (ti1, ti2, . . . , tin) = ti .

The set of all solutions (models) is called the model space:

F1 × · · · × Fn = {(f1, . . . , fn) | fj(si) = tij} .
To find all solutions, we find each Fj separately. Note that Fj is the set of all local functions at
node j that fit the data:

Fj = {fj : fj(s1) = tij , . . . , fj(sm) = tim} .
To find Fj , we use that fact that it can be written as

Fj = fj + I = {fj + h : h ∈ I} ,
where fj is any particular function in Fj , and I is the set of polynomials that vanish on the data:

I = {h : h(si) = 0 for all i = 1, . . . ,m} .
Thus, to find Fj , we need to do two things:

(1) Find the ideal I;
(2) Find any polynomial fj that fits the data.

1. Finding I: Define I(si) to be the set of polynomials that vanish on si:

I(si) = {all polynomials hi such that hi(si) = 0}
= {(x1 − si1)g1(x) + (x2 − si2)g2(x) + · · · (xn − sin)gn(x)}
= 〈x1 − si1, x2 − si2, . . . , xn − sin〉

Clearly, the set I of polynomials that vanish on all si (for i = 1, . . .m) is simply

I =

m⋂
i=1

I(si) .

2. Finding fj : This method uses the “Chinese Remainder Theorem” for rings, though this is “hid-

den” in the background.

For each data point si; i = 1, . . . ,m, we’ll construct an “r-polynomial” that has the following
property:

(1) ri(x) =

{
1 x = si

0 x 6= si

Once we have the r-polynomials, then the polynomial fj(x) we seek will be

fj(x) = t1jr1(x) + t2jr2(x) + · · ·+ tmjrm(x) .

So, how do we find these r-polynomials? There are likely many such polynomials that work, but
here’s a sure-fire way to construct them:

ri(x) =

m∏
k=1
k 6=i

bik(x) ,



2

where

bik(x) = (si` − sk`)
p−2(x` − sk`)

and ` is the first coordinate in which si and sk differ.

This looks horrible! (But it’s not too bad.) Let’s try it. Consider the following time series in a
3-node system over Z5:

s1 = (2, 0, 0)= t0

s2 = (4, 3, 1) = t1

s3 = (3, 1, 4) = t2

s4 =(0, 4, 3) = t3

For reference, here are the input vectors si and output vectors ti:

s1 = (s11, s12, s13) = (2, 0, 0) , t1 = (t11, t12, t13) = (4, 3, 1) ,

s2 = (s21, s22, s23) = (4, 3, 1) , t2 = (t21, t22, t23) = (3, 1, 4) ,

s3 = (s31, s32, s33) = (3, 1, 4) , t3 = (t31, t32, t33) = (0, 4, 3) .

Note that s1 differs from s2 and s3 in the ` = 1 coodinate, so this ` will work for each of f1, f2,
and f3.

Let’s compute the first r-polynomial, which is:

r1(x) = b12(x)b13(x) .

Since we are working in Z5, we are taking the remainder of everything modulo 5. Particularly
useful identities are: 0 = 5, −1 = 4, −2 = 3, −3 = 2, and −4 = 1. Using our formulas for bij(x),
we compute:

b12(x) = (s11 − s21)3(x1 − s21) = (2− 4)3(x1 − 4) = −8(x1 + 1) = 2x1 + 2

b13(x) = (s11 − s31)3(x1 − s31) = (2− 3)3(x1 − 3) = −x1 + 3 = 4x1 + 3 .

Therefore, the first r-polynomial is

r1(x) = b12(x)b13(x) = (2x1 + 2)(4x1 + 3) = 8x2
1 + 14x1 + 6 = 3x2

1 + 4x1 + 1 .

Your turn! Compute r2(x) and r3(x), and then use these to find f1(x), f2(x), and f3(x). Note
that you will need to compute the polynomials b21(x), b23(x), b31(x), and b32(x).

Before proceeding, check to make sure that each of these polynomials fits the data. In other words,
for each j = 1, 2, 3, verify (do this now!) that

fj(s1) = fj(2, 0, 0) = s1j , fj(s2) = fj(4, 3, 1) = s2j , fj(s3) = fj(3, 1, 4) = s3j .

To explore why this works, go back a step further, and verify that each r-polynomial satisfies the
equation from (1).

Now that we have found f1, f2, and f3, our “particular” solution that fits the data is f =
(f1, f2, f3), and our “general solution” (the model space) is the set

F1 × · · · × Fn = f + (I × · · · × I)

= (f1 + I, . . . , fn + I) .



3

Further exploration. In this project, we will investigate a simple Boolean FDS, explore its
phase space, and attempt to reverse engineer it given partial data.

Consider the following polynomial dynamical system:

f1(x1, x2, x3) = x1 ∧ x2 = x1x2

f2(x1, x2, x3) = x1 ∧ x2 ∧ x3 = x1x2x3

f3(x1, x2, x3) = x1 ∧ x2 = x1x2 .

This is called an AND-network because the Boolean functions can be written as logical AND
functions.

Go to the Analysis of Dynamic Algebraic Models (ADAM) toolbox, at http://adam.plantsimlab.
org/. Enter the functions above into the “Model Input” box and click the “Analyze” button. The
state space should look like this:

001 010 011 100 101

000

110

111

This graph literally encodes the entire function F = (f1, f2, f3) : F3
2 −→ F3

2.

Let’s try to reverse engineer this network given partial data. In particular, let’s suppose that all
we know is the following “piece” of the state space (elephant):

s1 = (1, 1, 0)= t0

s2 = (1, 0, 1) = t1

s3 = (0, 0, 0) = t2

s4 =(0, 0, 0) = t3

Follow the steps of the above example to find all FDS maps that fit this data. Naturally, you could
“cheat” and use the AND functions above for f1, f2, and f3, but try the r-polynomial method.
Do you get the same particular solution?


