The lac operon In E. coli

Matthew Macauley

Math 4500: Mathematical Modeling
Clemson University

Spring 2016

The lac operon

Promoter
AL

Regulatory p

gene Operlator %
DNA O lacZ

No
RNA
made
mRNA ﬁ RNA
l polymerase
Active
Protein ﬂ repressor
(a) Lactose absent, repressor active, operon off
lac operon
DNA . IZTTEE] oAl ez | iacV facA TN
* RNA 7
a- Polymerase
=] | |
Protein H_) p-Galactosidase Permease Transacetylase
Allolactose Inactive
(inducer) o repressor

(b) Lactose present, repressor inactive, operon on

lac operon, with lactose present

Lactose is brought into the cell by the /lac permease transporter protein
B —galactosidase breaks up lactose into glucose and galactose..
B —galactosidase also converts lactose into allolactose.

Allolactose binds to the lac repressor protein, preventing it from binding to
the operator region of the genome.

Transcription continues: mMRNA encoding the /ac genes is produced.

Lac proteins are produced, and more lactose is brought into the cell. (The
operon is ON.)

Eventually, all lactose is used up, so there will be no more allolactose.

The lac repressor can now bind to the operator, so mRNA transcription stops.
(The operon has turned itself OFF)

Our first simple Boolean model
4

At the bare minimum, we should expect:

o Lactose absent => operon OFF.
o Lactose present, glucose absent => operon ON.
o Lactose and glucose present => operon OFF. e

x, (t+1)=f,(t+1)=G, A(L(t)VL)
X (t+1)=f,(t+1)=M(?)

x,(t+1) = f,(t+1)=G, A [(Le AE())V (L) A %)]

The state space (or phase space) is the directed graph (V, T), where
V={(xM,xE,xL):xi€{O,1}} T={(x,f(x)):xEV}

We drew the state space for all four choices of the parameters:

o (L., G =(0, 0). Every state ended up in the “OFF” fixed point (0,0,0).

o (L, G.)=(0, 1). Every state ended up in the “OFF” fixed point (0,0,0).
Ge) = (1, 0). Every state ended up in the “ON” fixed point (1,1,1).

tate ended up i

A more refined model

® Qur model only used 3 variables: mRNA (M), enzyme (E), and lactose (L).

e Let’s propose a new model with 5 variables:

e M: mRNA Ju=A
e B: B—galactosidase fo=M
e A: allolactose fi=Av(LAB)
e |: intracellular lactose f,=PVv(LAB)
® P: /ac permease (transporter protein) fr=M

® Assumptions
® Translation and transcription require one unit of time.
® Protein and mRNA degradation require one unit of time
® | actose metabolism require one unit of time
e [Extracellular lactose is always available.

® FExtracellular glucose is always unavailable.

Using ADAM to compute the state space

= f1 - X3

Su=A4 f2 = x1

fB =M f3 = x3+x4*x2+x3*x4*x2
f4 = x5+x4*(1+x2)+x5*x4*(1+x2)

fi=Av(LAB) f5 = x1

f, =PVv(LA t_B)

fr=M -
4)

Cazoood CLrooe> What analysis would you like to run?

© Simulation of all trajectories (< 20 nodes)

v
01011 11010 11011 @ 01110 00100
y

 J Y \

Problems with our refined model

® Model variables:

Ju=A4
e M: mRNA By
e B: B—galactosidase Js =
fi=Av(LAB)
e A: allolactose =
e L: intracellular lactose fu=PVv(LAB)
® P: /ac permease (transporter protein) fo=M

® Problems:

® The fixed point (M,B,A,L,P) = (0,0,0,0,0) should not happen with lactose
present but not glucose. [though let’s try to justify this...]

® The fixed point point (M,B,A,L,P) =(0,0,0,1,0) is not biologically feasible:
it would describe a scenario where the bacterium does not metabolize
intracellular lactose.

e Conclusion: The model fails the initial testing and validation, and is in need of
modification. (Homework!)

Catabolite repression

We haven’t yet discussed the cellular mechanism that turns the /ac operon
OFF when both glucose and lactose are present. This is done by catabolite
repression.

The lac operon promoter region has 2 binding sites:
® One for RNA polymerase (this “unzips” and reads the DNA)

® One for the CAP-cAMP complex. This is a complex of two molecules: catabolite
activator protein (CAP), and the cyclic AMP receptor protein (CAMPB, or crp).

Binding of the CAP-cAMP complex is required for transcription for the lac
operon.

Intracellular glucose causes the cAMP concentration to decrease.
When cAMP levels get too low, so do CAP-cAMP complex levels.

Without the CAP-cAMP complex, the promoter is inactivated, and the /ac
operon is OFF.

Lac operon gene regulatory network

B /acP W lacZ lacY lacA M

A more refined model

® Variables:
e M: mRNA
® P: /ac permease

e B: B—galactosidase

B
e (: catabolite activator protein (CAP)
R: repressor protein (Lacl)

A: allolactose e
e A;: atleast low levels of allolactose

® L: intracellular lactose
® | atleastlow levels of intracellular lactose iy

® Assumptions:
® Transcription and translation require one unit of time.
® Degradation of all mRNA and proteins occur in one time-step.

e High levels of lactose or allolactose at any time t imply at least low levels
for the next time-step t+1.

A more refined model #-rac

fP =M
® This 9-variable model is about as big as ADAM can render a state f.=M
space. B
)) . . fC = Ge
® [n fact, it doesn’t work using the “Open Polynomial Dynamical - —
System (oPDS)” option (variables + parameters). Jr=ANA
fi=LAB
® |nstead, it works under “Polynomial Dynamical System (PDS)”, if we AVIVL
manually enter numbers for the parameters. fa=AVLVL,
f.=G,APAL

® Here's a sample piece of the state space:

S B = —— —_ .

——{__ 1001@1101 < 1@@1010@0_} _loololpol -

llolololo & (:___101010—1i_; (:’_1_19101100 I ____10101191) ' _1_1 1911—13 C;'_l—olull—li_;:] __tlilolooo =
— I - —— i i e

1111010 1n':) ¢ 111101011
S —— o I —P_ E—

—— — - Jp—
— — _P_F_d-" J—
- -— - —

——__ N _-____
?':?31101111 5_'_‘)
Lt P

What if the state space iIs too big?

® The previous 9-variable model is about as big as ADAM can handle. fy, =RAC

® However, many gene regulatory networks are much bigger.

e A Boolean network model (2006) of T helper cell differentiation
has 23 nodes, and thus a state space of size 223 = 8,388,608. f.=G

e A Boolean network model (2003) of the segment polarity genes e

in Drosophila melanogaster (fruit fly) has 60 nodes, and a state Je=ANA
space of size 260=1.15 x 1018, fi=LAB
® There are many more examples... fu=AvVLvVL
® For systems like these, we would like to be able to analyze them fi= EeAP/\Le

without actually constructing the entire state space.

® One of the first goals is how to find the fixed points. This amounts to
solving a system of equations: ,
ey

=x1

How to find the fixed points

* Let's rename variables: (M,P,B,C,R,A,A,,L,L,)=(x,,X,,X3,X,,Xs,X¢,X,Xg,X,)

® Writing each function in polynomial form, and then fx- = .X'i for each i=1,...,9
yields the following system: !

fu=RAC=M (X, +x,x.+x,=0

fp=M=P x,+x,=0

Js=M=B x,+x;=0

fe=G.=C X, HG, +1)=0

fo=ANA =R 1Xs+X X +x, +x,+1=0

Ja=LAB=A X +x,x, =0

Ja=AVLVL =4 XeHX X g+ X g+ X g X g+ X (X g+X (X g+ XXXy =0
f,=G,APAL, =A, xg+x,L, (G, +1)=0

I =G, A(LVL)=L, X +(G, + D (xg + XL, +L,)=0

his for all 4 combinations: G

How to find the fixed points

Let’s first consider the case when (G,,L,)=(1,1)

We can solve the system by typin%jthe following commands into .Saige
(h’ﬁc’gtps://cloud.sagemath.com/), the free open-source mathematica
software:

print "Le =", Le;_
print "Ge =", Ge;

1

2 P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2), 9, order ='lex'); P

3 I Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
4

5 Le=l;_

6 Ge=l;_

7

8

9

Le =1
Ge =1

11 I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+l), x5+x6*x7+x6+x7+1, x6+x3*x8,
X6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+l)*x2, x9+(Get+l)*(Le+x8+Le*x8)); I

12 Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, xX6*x8*x9 +
X6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x9) of Multivariate Polynomial Ring in x1, x2,
x3, x4, x5, x6, x7, x8, X9 over Finite Field of size 2

13 |
14 B = I.groebner basis(); B

15 I [x1, x2, x3, x4, x5 + 1, x6, x7, x8, x9]

What those Sage commands mean

Let’s go over what the following commands mean:

>

>

P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2),9,order='lex’);
= Define P to be the polynomial ring over 9 variables, x1,...,x9.

= GF(2)={0,1}, and so the coefficients are binary.

= order=‘lex’ specifies a monomial order. More on this later.

Le=1; Ge=1l; print "Le =", Le; print "Ge =", Ge;

= This defines two constants (Ge,Le) =(1,1) and prints them.

I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+l), x5+x6*x7+x6+x7+1,
X6+x3*x8, X6+xX7+x8+x9+x8*x9+xX6*x8+xXx6*x9+x6*x8*x9, x8+Le*(Ge+l)*x2,
X9+ (Ge+l) * (Le+x8+Le*x8)); I

= Defines | to be the ideal generated by those following 9 polynomials, i.e.,

I={pf,+-+pJ.:p. EP}

B = I.groebner basis(); B
efine B to be the Grobner basis of | w.r.t. the lex monomial order. (M

What does a Grobner basis tell us?

The output of B = I.groebner basis(); B is the following:
[x1, x2, x3, x4, xb+1, x6, x7, x8, x9]

This is short-hand for the following system of equations:

{x,=0, x,=0, x,=0, x,=0, x,+1=0, x,=0, x,=0, x,=0, x, =0}

This simple system has the same set of solutions as the much more complicated system
we started with:

(X, +x,x,+x, =0
x,+x,=0
xX,+x;=0
x,4(G,+1)=0

XX X +x+x,+1=0

J\

Xet+x3x3 =0
XXX g+ X g+ X g X g+ X (X g+ X (X g+ X XXy =0
xXg+x,L,(G,+1)=0

Grobner bases vs. Gaussian elimination

<> Grobner bases are a generalization of Gaussian elimination, but for
systems of polynomials (instead of systems of linear equations)

< In both cases:
= The input is a complicated system that we wish to solve.
= The output is a simple system that we can easily solve by inspection.

<> Consider the following example:

, , x+2y=1
= |nput: The 2x2 system of linear equations
3x+8y=1
= (aussian elimination yields the following:
L2yttt 210 | {1 o3 (_|10]3
3 8|1 0 2| -2 0 2| -2 0O 1| -1
= This is just the much simpler system x+0y—3

same solution!

Back-substitution & Gaussian elimination

<> Note that we don’t necessarily need to do Gaussian elimination until the
matrix is the identity. As long as it is upper-triangular, we can back-
substitute and solve by hand.

Il
S oo N

X+

< For example: <
< y—z
0

<> Similarly, when Sage outputs a Grobner basis, it will be in “upper-triangular
form”, and we can solve the system easily by back-substituting.

<~ We’'ll do an example right away. For this part of the class, you can think of
Grobner bases as a mysterious “black box” that does what we want.

<~ We'll study them in more detail shortly, and understand what'’s going on behind
the scenes. _d

Grobner bases: an example

-

2 2, .2 _
<~ Let’s use Sage to solve the following system: X +y +z°=1

J\

x*=y+z° =0

x—-2z=0

17 P.<x,y,z>=PolynomialRing(RR,3,order="lex'); P
18 I Multivariate Polynomial Ring in x, y, z over Real Field with 53 bits of precision

19
20 I = ideal(x"2+y"2+z"2-1, x"2-y+z2"2, x-2z); I

21 Ideal (x"2 + y"2 + z"2 - 1.00000000000000, x"2 -y + 2”2, x - z) of Multivariate Polynomial
Ring in x, y, z over Real Field with 53 bits of precision

22
23 B = I.groebner basis(); B

24 I [x -2z, y - 2.00000000000000%z"2, z"4 + 0.500000000000000*%z"2 - 0.250000000000000]

<> From this, we get an “upper-triangular” system:

ething we can solve by hand.

Grobner bases: an example (cont.)

x-z2=0
<> To solve the reduced system: ,
: y-2z"=0
—1+\/§ 4 2 _
= SolveforzinEqg.3: <=% 1 | z +.527=25=0
2-4+J§
= Plugzinto Eg. 2 and solve for y: y=2z"= >
-+ _1"'\/3 2 2 2
= Plugy & zinto Eqg. 1 and solve for x: L= 4 X +y +Z =1

x*=y+z° =0

J\.

< Thus, we get 2 solutions to the original system:
x—2z=0

_1++/5 |=1++5 _1++/5 —1++/5
2 ’ 4 (x27y27Z2)= -~ 4 s e

“{m%.‘.l‘_.-;- ==

Returning to the lac operon

* We have 9 variables: (M,P,B,C,R,A,A;,L,L))=(X,,X,,X3,X,,X5,X¢,X7,Xg,Xg)

® Writing each function in polynomial form, we need to solve the system f = X
for each i=1,...,9, which is the following:
f,=RAC=M (X, +x,x+x,=0
fp=M=P x,+x,=0
Js=M=B x,+x;=0
fc=G,=C x,+(G, +1)=0
fe=AANA =R 1Xs+X X +x,+x,+1=0
fA=LAB=A x6+x3x8=0
Ja=AVLVL =4 XeHX X g+ X g+ X g X g+ X (X g+X (X g+ XXXy =0
f,=G,APAL,=A, Xe+x,L,(G,+1)=0

f,=GALVL)=L [x,+G, +D)(x,+x,L,+L,)=0

this for all 4 combinations: (G, L

Returning to the lac operon
* Again, we use variables (M,P,B,C,R,A,A,,L,L,)=(x,,X,,X5,X,,Xs,X¢,X,Xg,X,)
and parameters (G,,L,) =(0,0)

® Here is the output from Sage:

print "Le =", Le;_

print "Ge =", Ge;

1

2 P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2), 9, order ='lex'); P

3 I Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, X8, X9 over Finite Field of size 2
4

5 Le=0;_

6 Ge=0;_

7

8

9

Le = 0
Ge = 0

11 I = ideal(xl+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+l), x5+x6*x7+x6+x7+1, x6+x3*x8,
X6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+l)*x2, x9+(Ge+l)*(Le+x8+Le*x8)); I

12 Ideal (x1 + x4#*x5 + x4, x1 + x2, x1 + x3, x4 + 1, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, xX6*x8*x9 +
X6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x8 + x9) of Multivariate Polynomial Ring in x1, x2
, X3, x4, x5, x6, X7, x8, X9 over Finite Field of size 2

13

14 B = I.groebner basis(); B
15 I [x1, x2, x3, x4 + 1, x5 + 1, x6, x7, x8, x9]

O NV W N

11

12

13
14

15

Returning to the lac operon
* Again, we use variables (M,P,B,C,R,A,A,,L,L,)=(x,,X,,X5,X,,Xs,X¢,X,Xg,X,)
and parameters (G,,L,) = (1,0)
e Here is the output from Sage:

P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2), 9, order ='lex'); P

I Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2

Le=0;__
Ge=1; _
print "Le =", Le;_

print "Ge =", Ge;
Le =0
Ge =1

I = ideal(x1l+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+l), x5+x6*x7+x6+x7+1, x6+x3*x8,
X6+x7+x8+x9+x8*x9+x6*x8+xX6*xX9+x6*x8*x9, x8+Le*(Get+tl)*x2, x9+(Ge+l)*(Le+x8+Le*x8)); I

Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, X6*x8*x9 +
X6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x9) of Multivariate Polynomial Ring in x1, x2,
x3, x4, x5, x6, x7, x8, X9 over Finite Field of size 2

B = I.groebner basis(); B

[x1, x2, x3, x4, x5 + 1, x6, x7, x8, x9]

O o~k W N

11

12

13
14

s |

Returning to the lac operon
* Again, we use variables (M,P,B,C,R,A,A,,L,L,)=(x,,X,,X5,X,,Xs,X¢,X,Xg,X,)
and parameters (G,,L,) =(0,1)

® Here is the output from Sage:

P.<x1,x2,x3,x4,x5,x6,x7,%x8,x9> = PolynomialRing(GF(2), 9, order ='lex'); P
I Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, X9 over Finite Field of size 2
Le=0;
Ge=1; _
print "Le =", Le;_
print "Ge =", Ge;
Le =0
Ge =1
I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+l), x5+x6*x7+x6+x7+1, x6+x3*x8,
X6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, xB+Le*(Ge+l)*x2, x9+(Ge+l)*(Le+x8+Le*x8)); I
Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, xX6*x8*x9 +
X6*x8 + x6*x9 + x6 + X7 + x8*x9 + x8 + x9, x8, x9) of Multivariate Polynomial Ring in x1, x2,
x3, x4, x5, x6, x7, X8, X9 over Finite Field of size 2
B = I.groebner basis(); B

[x1, x2, x3, x4, x5 + 1, x6, x7, x8, x9]

Fixed point analysis of the lac operon

Using the variables (M,P,B,C,R,A,AZ,L,LZ) = (xl,x2,x3,x4,x5,x6,x7,x8,x9)

we got the following fixed points for each choice of parameters (G, L))

Input: (Ge,Le) =(0,0)

Fixed point: (xl,xz,x3,x4,x5,x6,x7,x8,x9) =(0,0,0,1,1,0,0,0,0)

nput (G, L,) =(1,0)
Fixed point: (xlax29x3ax4,x5ax6ax7,x89x9) = (070907091a090a090)

nput: (G,,L,)=(L,1)
Fixed point: (xl,xz,x3,x4,x5,x6,x7,x8,x9)=(0,0,0,0,1,0,0,0,0)

nput: (G,,L,) = (0,1)

Fixed point: (X[, X,,X5,X,,Xs, X6, X7, Xg,X9) = (1,1,1,1,0,1,1,1,1)

e fixed points make biological sense!

