- 1. Let X_1, X_2 be vector spaces over a field K. Show that $\dim(X_1 \times X_2) = \dim X_1 + \dim X_2$.
- 2. Let Y be a subspace of a finite-dimensional vector space X. Show that $Y \times X/Y$ is isomorphic to X.
- 3. Let K be a finite field. The *characteristic* of K, denoted char K, is the smallest positive integer n for which $n1 := \underbrace{1+1+\cdots+1}_{n \text{ times}} = 0.$
 - (a) Prove that the characteristic of K is prime.
 - (b) Show that K is a vector space over \mathbb{Z}_p , where $p = \operatorname{char} K$.
 - (c) Show that the order |K| of K (the number of elements it contains) is a prime power.
 - (d) Show that if K and L are finite fields with $K \subset L$ and $|K| = p^m$ and $|L| = p^n$, then m divides n.
- 4. Let X be a vector space over a field K and let X' be the set of linear functions from X to K, also known as the *dual space* of X.
 - (a) Let v_1, \ldots, v_n be a basis for X. For each *i*, show there exists a unique linear map $f_i: X \to K$ such that $f_i(v_i) = 1$ and $f_i(v_j) = 0$ for $j \neq i$.
 - (b) Show that f_1, \ldots, f_n is a basis for X' (called the *dual basis* of v_1, \ldots, v_n).
 - (c) Consider the basis $v_1 = (1, -1, 3)$, $v_2 = (0, 1, -1)$, and $v_3 = (0, 3, -2)$ of $X = \mathbb{R}^3$. Find a formula for each element of the dual basis.
 - (d) Express the linear map $f \in X'$, where f(x, y, z) = 2x y + 3z as a linear combination of the dual basis, f_1, f_2, f_3 .
- 5. Let S be a subset of X. The annihilator of S is the set

$$S^{\perp} = \{\ell \in X' \mid \ell(s) = 0 \text{ for all } s \in S\}.$$

(a) Show that

$$\operatorname{span}(S) = \bigcap_{S \subseteq T_{\alpha} \le X} T_{\alpha}$$

making it well-founded to speak of the "smallest subpace of X that contains S."

- (b) Show that if S is a subspace of X, then S^{\perp} is a subspace of X'.
- (c) Let Y = Span(S). Show that $S^{\perp} = Y^{\perp}$.