1. Let \mathcal{P}_2 be the vector space of all polynomials $p(x) = a_0 + a_1 x + a_2 x^2$ over \mathbb{R} , with degree ≤ 2 . Let ξ_1, ξ_2, ξ_3 be distinct real numbers, and define

$$\ell_j = p(\xi_j) \text{ for } j = 1, 2, 3.$$

- (a) Show that ℓ_1, ℓ_2, ℓ_3 are linearly independent functions on \mathcal{P}_2 .
- (b) Show that ℓ_1, ℓ_2, ℓ_3 is a basis for the dual space \mathcal{P}'_2 .
- (c) Find polynomials $p_1(x), p_2(x), p_3(x)$ in \mathcal{P}_2 of which ℓ_1, ℓ_2, ℓ_3 is the dual basis in \mathcal{P}'_2 .
- 2. Let W be the subspace of \mathbb{R}^4 spanned by (1, 0, -1, 2) and (2, 3, 1, 1). Which linear functions $\ell(x) = c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4$ are in the annihilator of W? Write your answer by giving an explicit basis of W^{\perp} .
- 3. Let $T: X \to U$ be a linear map. Prove the following:
 - (a) The image of a subspace of X is a subspace of U.
 - (b) The inverse image of a subspace of U is a subspace of X.
- 4. Prove Theorem 3.3 in Lax:
 - (a) The composite of linear mappings is also a linear mapping.
 - (b) Composition is distributive with respect to the addition of linear maps, that is,

$$(R+S) \circ T = R \circ T + S \circ T$$

and

$$S \circ (T+P) = S \circ T + S \circ P,$$

where $R, S: U \to V$ and $P, T: X \to U$.

- 5. Show that whenever meaningful,
 - (a) (ST)' = T'S'
 - (b) (T+R)' = T' + R'
 - (c) $(T^{-1})' = (T')^{-1}$.

Here, S' denotes the transpose of S. Carefully describe what you mean by "whenever meaningful" in each case.

6. Give a direct algebraic proof of $N_{T'}^{\perp} = (R_T^{\perp})^{\perp}$. (You may use the fact that $N_{T'} = R_T^{\perp}$, but don't simply take the annihilator of both sides of this equation.)