Throughout, X is assumed to be a vector space of dimension $n < \infty$.

- 1. Let $A, B: X \to X$ be linear maps.
 - (a) Show that if A is invertible and similar to B, then B is also invertible, and B^{-1} is similar to A^{-1} .
 - (b) Show that if either A or B is invertible, then AB and BA are similar.
- 2. Suppose $T: X \to X$ is a linear map of rank 1.
 - (a) Show that there exists $c \in K$ such that $T^2 = cT$.
 - (b) Show that if $c \neq 1$, then I T has an inverse.
- 3. Suppose that $S, T: X \to X$ are linear maps.
 - (a) Show that $\operatorname{rank}(S+T) \leq \operatorname{rank}(S) + \operatorname{rank}(T)$.
 - (b) Show that $\operatorname{rank}(ST) \leq \operatorname{rank}(S)$.
 - (c) Show that $\dim(N_{ST}) \leq \dim N_S + \dim N_T$.

For each of these, give an explicit example showing how equality need not hold.

4. Let X and U be vector spaces, and suppose that Y is a subspace of X. Let $Q: X \to X/Y$ be the canonical quotient map sending $x \xrightarrow{Q} \{x\}$, and let $T: X \to U$ be a linear map. Give necessary and sufficient conditions for the existence of a unique linear map $S: X/Y \to U$ such that $T = S \circ Q$. When this happens, the map T is said to factor through the quotient space, as shown by the following commutative diagram:

Prove all of your claims.