Read: Lax, Appendix 15, pages 363–366.

- 1. Let X be an n-dimensional vector space, and $A: X \to X$ a linear map with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Let v_1, \ldots, v_n be the corresponding eigenvectors of A, and let ℓ_1, \ldots, ℓ_n be the corresponding eigenvectors of the transpose $A': X' \to X'$.
 - (a) Prove that $(\ell_i, v_i) \neq 0$ for $i = 1, \ldots, n$.
 - (b) Show that if $x = a_1v_1 + \cdots + a_nv_n$, then $a_i = (\ell_i, x)/(\ell_i, v_i)$.
 - (c) Is ℓ_1, \ldots, ℓ_n necessarily the dual basis of v_1, \ldots, v_n ? Why or why not?
- 2. For each matrix, compute its Jordan canonical form, and give a basis of \mathbb{C}^4 consisting of its generalized eigenvectors.

	-1	0	1	0			[1	0	0	1]	
A =	2	1	2	1		D	2	1	0	-4	4 2
	0	0	-1	0	,	$B \equiv$	1	0	1	-2	
	4	0	-6	1			0	0	0	1	

- 3. Let A be a matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. The *index* of $\lambda = \lambda_i$ is the minimum integer $d = d_i$ such that $N_{(A-\lambda I)^{d+1}} = N_{(A-\lambda I)^d} \supseteq N_{(A-\lambda I)^{d-1}}$.
 - (a) Prove, using the spectral theorem but without appealing to Jordan canonical form, that the minimal polynomial of A is

$$m_A(s) = \prod_{i=1}^k (s - \lambda_i)^{d_i}$$

- (b) Give a simple proof using the Jordan canoncial form.
- 4. Find a list of real matrices, as long as possible, such that:
 - (i) The characteristic polynomial of each matrix is $p(s) = (s-1)^5(s+1)$.
 - (ii) The minimal polynomial of each matrix is $m(s) = (s-1)^2(s+1)$.
 - (iii) No two matrices in the list are similar to each other.
- 5. Let $X \subset \mathbb{R}[x, y]$ be the space of polynomials in x, y of total degree $\leq n$. Find a basis of X, and find the Jordan canonical form of the linear map

$$A: X \longrightarrow X, \qquad f \longmapsto f + \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$$

[*Hint*: First find all genuine eigenvectors.]

6. This problem is about the *rational canonical form*. Consider the following matrix:

$$M_n = \begin{bmatrix} 0 & -a_0 \\ I_{n-1} & -\mathbf{a}_{n-1} \end{bmatrix} \quad \text{where} \ \mathbf{a}_{n-1} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

(a) Show that the characteristic polynomial of M_n is

$$P_{M_n}(s) = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0.$$

Here, I_{n-1} denotes the $(n-1) \times (n-1)$ identity matrix.

- (b) Is $P_{M_n}(s)$ also the minimal polynomial? Prove or disprove.
- (c) Now, let X be a 4 dimensional vector space over \mathbb{R} with basis $\{x_1, x_2, x_3, x_4\}$ and let $T: X \to X$ be a linear map such that

$$T(x_1) = x_2$$
, $T(x_2) = x_3$, $T(x_3) = x_4$, $T(x_4) = -x_1 - 4x_2 - 6x_3 - 4x_4$.

Is T diagonalizable over \mathbb{C} ? Why or why not?