Linear maps

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Spring 2016

Preliminaries

Goal

Abstract the concept of a matrix as a linear mapping between vector spaces.

Advantages:

- simple, transparent proofs;
- better handles infinite dimensional spaces.

Definition

A linear map (or mapping, transformation, or operator) between vector spaces X and U over K is a function $T: X \to U$ that is:

- (i) additive: T(x+y) = T(x) + T(y), for all $x, y \in X$;
- (ii) homogeneous: T(ax) = aT(x), for all $x \in X$, $a \in K$.

The domain space is X and the target space is U.

Usually we'll write Tx for T(x), and so the additive property is just the distributive law:

$$T(x + y) = Tx + Ty$$
.

Examples of linear maps

Examples

- (i) Any isomorphism;
- (ii) $X = U = \{\text{polynomials of degree } < n \text{ in s}\}, \quad T = \frac{d}{ds}.$
- (iii) $X = U = \mathbb{R}^2$, T = rotation about the origin.
- (iv) X any vector space, U=K (1-dimensional), T any $\ell\in X'$.

(v)
$$X = U = C_0(\mathbb{R})$$
, $(Tf)(x) = \int_{-1}^1 f(y)(x-y)^2 dy$.

(vi)
$$X = \mathbb{R}^n$$
, $U = \mathbb{R}^m$, $u = Tx$, where $u_i = \sum_{j=1}^n t_{ij}x_j$, $i = 1, \ldots, m$.

(viii)
$$X = U = \{\text{functions with } \int_{-\infty}^{\infty} |f(x)| dx < \infty \},$$

 $(Tf)(\xi) = \int_{-\infty}^{\infty} f(x)e^{i\xi x} dx.$ "Fourier transform"

Basic properties

Theorem 3.1

Let $T: X \to U$ be a linear map.

- (a) The image of a subspace of X is a subspace of U.
- (b) The preimage of a subspace U is a subspace of X.

(Proof is a HW exercise.)

Definition

The range of T is the image $R_T := T(X)$. The rank of T is dim R_T .

The nullspace of T is the preimage of 0:

$$N_T := T^{-1}(0) = \{x \in X \colon Tx = 0\}.$$

The nullity of T is dim N_T .

Rank-nullity theorem

Theorem 3.2

Let $T: X \to U$ be a linear map. Then $\dim N_T + \dim R_T = \dim X$.

Proof

Since T maps N_T to 0, then $Tx_1 = Tx_2$ if $x_1 \equiv x_2 \mod N_T$.

Thus, T extends to a well-defined map on the quotient space X/N_T :

$$T: X/N_T \longrightarrow U, \qquad T\{x\} = Tx.$$

Note that this maps is 1–1, and so $\dim(X/N_T) = \dim R_T$.

Therefore, $\dim X = \dim N_T + \dim X/N_T = \dim N_T + \dim R_T$.

Consequences of the rank-nullity theorem

Corollary A

Suppose dim $U < \dim X$. Then Tx = 0 for some $x \neq 0$.

Proof

We have dim $R_T \leq \dim U < \dim X$, so by the R-N Theorem, dim $N_T > 0$.

Thus, there is some nonzero $x \in N_T$.

Example A

Take $X = \mathbb{R}^n$, $U = \mathbb{R}^m$, with m < n. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be any linear map (see Example (vi)).

Since $m = \dim U < \dim X < n$, Corollary A implies that the system of m equations

$$\sum_{j=1}^{n} t_{ij} x_j = 0 \qquad i = 1, \dots, m$$

has a non-trivial solution, i.e., not all $x_i = 0$.

Consequences of the rank-nullity theorem

Corollary B

Suppose dim $X = \dim U$ and the only vector satisfying Tx = 0 is x = 0. Then $R_T = U$.

Proof

We have $N_T = \{0\}$, which means that dim $N_T = 0$.

Clearly, $R_T \leq U$ ["is a subspace of"]. We just need to show they have the same dimension.

By the R-N Theorem, dim $U = \dim X = \dim R_N + \dim N_T = \dim R_N$.

Example B

Take
$$X=U=\mathbb{R}^n$$
, and $T:\mathbb{R}^n \to \mathbb{R}^n$ given by $\sum_{j=1}^n t_{ij}x_j=u_i$, for $i=1,\ldots,n$.

If the related homogeneous system of equations $\sum_{j=1}^{n} t_{ij} x_j = 0$, for $i = 1, \dots, n$, has only the

trivial solution $x_1 = \cdots x_n = 0$, then the inhomogeneous system T has a unique solution for all u_1, \ldots, u_n .

[Reason: $T: \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism.]

Applications of the rank-nullity theorem

Application 1: Polynomial interpolation

Take $X = \{p \in \mathbb{C}[x] : \deg p < n\}$, $U = \mathbb{C}^n$, and let $s_1, \dots, s_n \in \mathbb{C}$ all be distinct. Define

$$T: X \to U, \qquad Tp = (p(s_1), \ldots, p(s_n)).$$

Suppose Tp=0 for some $p\in X$. Then $p(s_1)=\cdots=p(s_n)=0$, which is impossible because p has at most n-1 distinct roots.

Therefore $N_T = \{0\}$, and so Corollary B implies that $R_T = U$.

Application 2: Average values of polynomials

Let $X = \{p \in \mathbb{R}[x] : \deg p < n\}$, $U = \mathbb{R}^n$, and I_1, \dots, I_n be pairwise disjoint intervals on \mathbb{R} .

The average value of p over I_i is the integral

$$\overline{p_j}:=rac{1}{|I_j|}\int_{I_j}p(s)\,ds$$
.

Define $T: X \to U$ by $Tp = (\overline{p_1}, \dots, \overline{p_n})$.

Suppose Tp = 0. Then $\overline{p_j} = 0$ for all j, and so p (if nonzero) must change sign in I_j .

But this would imply that p has n distinct roots, which is impossible.

Thus, $N_T = \{0\}$, and so $R_T = U$.

Application to numerical analysis

Application 3: Numerical solutions to Laplace's equation

Laplace's equation is $\Delta u=u_{xx}+u_{yy}=0$, where $\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$ is a linear operator.

Solutions to Laplace's PDE ("harmonic functions") are the functions in the nullspace of Δ .

If we fix the value of u on the boundary of a region $G \subset \mathbb{R}^2$, the solution to the boundary value problem $\Delta u = 0$ is as "flat as possible". [Think: plastic wrap stretched around ∂G .]

This models steady-state solutions to the heat equation PDE: $u_t = \Delta u$.

The finite difference method is a way to solve $\Delta u = 0$ numerically, using a square lattice with mesh spacing h > 0.

At a fixed lattice point O, let u_0 be the value of u at O, and u_W , u_E , u_N , u_S be the values at the neighbors.

We can approxmiate the derivatives with centered differences:

$$u_{xx} pprox rac{u_W - 2u_0 + u_E}{h^2} \,, \qquad u_{yy} pprox rac{u_N - 2u_0 + u_S}{h^2} \,.$$

Plugging this back into $\Delta u = 0$ gives $u_0 = \frac{u_W + u_N + u_E + u_S}{4}$, i.e., u_0 is the average of its four neighbors.

Application to numerical analysis (cont.)

Recall that we are trying to solve an inhomogeneous boundary value problem for Laplace's equation

$$\Delta u = 0$$
, $u|_{\partial G} = f(x, y) \neq 0$.

Claim

The homogeneous equation: $\Delta u = 0$, where u = 0 on ∂G , has *only* the trivial solution $u_0 = 0$ for all $(x, y) \in G$.

Proof

Let \hat{O} be the lattice point at which u achieves its maximum value.

Since
$$u_0 = \frac{u_W + u_N + u_E + u_S}{4}$$
, then $u_0 = u_W = u_N = u_E = u_S$.

Repeating this, we see that all lattice points take the same value for u, and so u = 0.

By the result in Example B, the related inhomogenous system for $\Delta u=0$, with arbitrary (non-zero) boundary conditions has a unique solution.

Algebra of linear mappings

Definition

Let $S, T: X \to U$ be linear maps. Define

- T + S by (T + S)(x) = Tx + Sx for each $x \in X$.
- **a** T by (aT)(x) = T(ax) for each $x \in X$, $a \in K$.

Easy fact

The set of linear maps from $X \to U$, denoted $\mathcal{L}(X, U)$, or Hom(X, U), is a vector space.

Theorem 3.3 (HW exercise)

If $T: X \to U$ and $S: U \to V$ are linear maps, then so is $(S \circ T): X \to V$.

Moreover, compositive is distributive w.r.t. addition. That is, if $P,T\colon X\to U$ and $R,S\colon U\to V$, then

$$(R+S)\circ T=R\circ T+S\circ T, \qquad S\circ (T+P)=S\circ T+S\circ P.$$

Remarks

- We usually just write $S \circ T$ as just ST.
- In general, $ST \neq TS$ (note that TS may not even be defined).

Invertibility

Definition

A linear map T is invertible if it is 1–1 and onto (i.e., if it is an isomorphism). Denote the inverse by T^{-1} .

Exercise

If T is invertible, then TT^{-1} is the identity.

Theorem 3.4 (exercise)

Let $T: X \to U$ be linear.

- (i) If T is linear, then so is T^{-1} .
- (ii) If S and T are invertible and ST defined, then it is invertible with $(ST)^{-1} = T^{-1}S^{-1}$.

Examples

- (ix) Take $X = U = V = \mathbb{R}[s]$, with $T = \frac{d}{ds}$ and S = multiplication by s.
- (x) Take $X=U=V=\mathbb{R}^3$, with S a 90° -rotation around the x_1 axis, and T a 90° -rotation around the x_2 axis.

In both of these examples, S and T are linear with $ST \neq TS$. (Which are invertible?)

Let $T: X \to U$ be linear and $\ell \in U'$ (recall: $\ell: U \to K$).

The composition $m := \ell T$ is a linear map $X \to K$, i.e., an element of X'.

Since T is fixed, this defines an assignment of each $m \in X'$ to $\ell \in U'$.

This defines the following linear map, called the transpose of T:

$$T': U' \longrightarrow X', \qquad T': \ell \longmapsto m,$$

Key property

The transpose of $T: X \to U$ is the (unique) map $T': U' \to X'$ that satisfies $m = T'\ell$, i.e.,

$$(T'\ell, x) = (\ell, Tx),$$
 for all $x \in X, \ \ell \in U'$.

Caveat: We are writing ℓT for $\ell \circ T$, but $T'\ell$ for $T'(\ell)$ (much like Tx for T(x)).

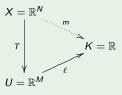
Properties (HW exercise)

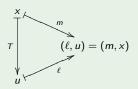
Whenever meaningful, we have

$$(ST)' = T'S'$$
, $(T+R)' = T'+R'$, $(T^{-1})' = (T')^{-1}$.

Examples (cont.)

(xi) Let
$$X=\mathbb{R}^N$$
, $U=\mathbb{R}^M$, and $Tx=u$, where $u_i=\sum_{j=1}^N t_{ij}x_j$.





By definition, for some $\ell_1, \ldots, \ell_m \in K$,

$$(\ell, u) = \sum_{i=1}^{M} \ell_{i} \underline{u_{i}} = \sum_{i=1}^{M} \ell_{i} \left(\sum_{j=1}^{N} t_{ij} x_{j} \right) = \sum_{i=1}^{M} \sum_{j=1}^{N} \ell_{i} t_{ij} x_{j} = \sum_{i=1}^{N} \left(\sum_{j=1}^{M} t_{ij} x_{j} \right) = \sum_{j=1}^{N} \underline{m_{j}} x_{j}$$

This gives us a formula for $m=(m_1,\ldots,m_N)$, where $(\ell,u)=(m,x)$.

We'll see later that if we express T in matrix form, then T' is formed by making the rows of T the columns of T'.

Proposition

If X'' and U'' are canonically identified with X and U, respectively, then T''=T.

Theorem 3.5

The annihilator of the range of T is the nullspace of its transpose, i.e., $R_T^{\perp} = N_{T'}$.

Proof

By definition,
$$\begin{array}{ll} R_T^\perp &=& \{\ell \in U': (\ell,u)=0 \ \forall u \in R_T\} \\ &=& \{\ell \in U': (\ell,Tu)=0 \ \forall x \in X\} \\ &=& \{\ell \in U': (T'\ell,x)=0 \ \forall x \in X\} \\ &=& N_{T'} \,. \end{array}$$

Thus, $\ell \in R_T^{\perp}$ iff $T'\ell = 0$, i.e., iff $\ell \in N_{T'}$.

Applying \perp to both sides of $R_T^{\perp} = N_{T'}$ (Theorem 3.5) yields the following:

Corollary 3.5

The range of T is the annihilator of the nullspace of T', i.e., $R_T = N_{T'}^{\perp}$.

Theorem 3.6

For any linear mapping $T: X \to U$, we have dim $R_T = \dim R_{T'}$.

Proof

Can can deduce the following easy facts:

- $\blacksquare \ \dim N_{T'} + \dim R_{T'} = \dim U' \qquad \qquad (\text{R-N Theorem applied to } T' \colon U' \to X');$
- $\blacksquare \dim U = \dim U'$ (Theorem 2.2).

Now $R_T^{\perp} = N_{T'}$ (Theorem 3.5) immediately yields the result.

Corollary 3.6

Let $T: X \to U$ be linear with dim $X = \dim U$. Then dim $N_T = \dim N_{T'}$.

Proof

Apply the R-N Theorem to $T\colon X\to U$ and $T'\colon U'\to X'\colon$

- \blacksquare dim $N_{T'}$ = dim U' dim $R_{T'}$.

Now apply dim $X = \dim U = \dim U'$ (assumption), and $\dim R_T = \dim R_{T'}$ (Theorem 3.6). \square

Algebra of linear mappings, revisited

Definition

An endomorphism of a vector space X is a linear map from X to itself. Denote the set of endomorphisms of X by $\mathcal{L}(X,X)$ or Hom(X,X) or End(X).

Remarks

 $\mathscr{L}(X,X)$ is a vector space, but we can also "multiply" vectors; it is an algebra.

It is an associative but noncommutative algebra, with unity I, satisfying Ix = x.

 $\mathcal{L}(X,X)$ contains zero divisors: pairs S,T such that ST=0 buth neither S nor T is zero.

Proposition

If $A \in \mathcal{L}(X,X)$ is a left inverse of $B \in \mathcal{L}(X,X)$ [i.e., AB = I], then it is also a right inverse [i.e., BA = I].

Definition

The invertible elements of $\mathcal{L}(X,X)$ forms the general linear group, denoted $\mathrm{GL}(n,K)$, where $n=\dim X$.

Every $S \in GL(n,K)$ defines a similarity transformation of $\mathscr{L}(X,X)$, sending $M \longmapsto M_S := SMS^{-1}$, for each $M \in \mathscr{L}(X,X)$. We say M and M_S are similar.

Similarity

Theorem 3.7

Every similary transform is an automorphism ["structure-preserving bijection"] of $\mathcal{L}(X,X)$:

$$(kM)_S = kM_S,$$
 $(M+N)_S = M_S + N_S,$ $(MN)_S = M_S N_S.$

Moreover, the set of similarity transforms forms a group under $(M_S)_T := M_{TS}$, called the inner automorphism group of GL(n, K).

Proof

Verification of $(kM)_S = kM_S$, and $(M + N)_S = M_S + N_S$ is trivial.

Next, observe that $M_SN_S=(SMS^{-1})(SNS^{-1})=SMNS^{-1}=(MN)_S$.

Finally,
$$(M_S)_T = T(SMS^{-1}) = T^{-1} = (TS)M(TS)^{-1} = M_{TS}$$
.

Checking the group axioms is a straight-forward exercise.

Theorem 3.8 (exercise)

Similarity is an equivalence relation, i.e., it is:

- (i) Reflexive: $M \sim M$:
- (ii) Symmetric: $L \sim M$ implies $M \sim L$;
- (iii) Transitive: $L \sim M$ and $M \sim N$ implies $L \sim N$.

Algebra of linear mappings

Theorem 3.9 (HW exercise)

If either A or B in $\mathcal{L}(X,X)$ is invertible, then AB and BA are similar.

Given any $A \in \mathcal{L}(X,X)$ and polynomial $p(s) = a_N s^N + \cdots + a_1 s + a_0$, consider the polynomial $p(A) = a_N A^N + \cdots + a_1 A + a_0 I$.

The set of polynomials in A is a commutative subalgebra of $\mathcal{L}(X,X)$. [to be revisited]

Miscellaneous definitions

- A linear map $P: X \to X$ is a projection if $P^2 = P$.
- The commutator of $A, B \in \mathcal{L}(X, X)$ is [A, B] := AB BA, which is 0 iff A and B commute.

Examples (cont.)

(xii) If $X = \{f : \mathbb{R} \to \mathbb{R}, \text{ contin.}\}$, then the following maps $P, Q \in \mathcal{L}(X, X)$ are projections:

- $(Pf)(x) = \frac{f(x) + f(-x)}{2}$; this is the even part of f. $(Qf)(x) = \frac{f(x) f(-x)}{2}$; this is the odd part of f.

Note that f = Pf + Qf for any $f \in X$.